• Title/Summary/Keyword: Still-motion method

Search Result 146, Processing Time 0.029 seconds

Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators with Magneto-Rheological Brake

  • Thanh, Tu Diep Cong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1983-1989
    • /
    • 2005
  • Industrial robots are powerful, extremely accurate multi-jointed systems, but they are heavy and highly rigid because of their mechanical structure and motorization. Therefore, sharing the robot working space with its environment is problematic. A novel pneumatic artificial muscle actuator (PAM actuator) has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. Its main advantages are high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. The PAM is undoubtedly the most promising artificial muscle for the actuation of new types of industrial robots such as Rubber Actuator and PAM manipulators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In addition, the nonlinearities in the PAM manipulator still limit the controllability. Therefore, it is not easy to realize motion with high accuracy and high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot To overcome these problems a novel controller, which harmonizes a phase plane switching control method with conventional PID controller and the adaptabilities of neural network, is newly proposed. In order to realize satisfactory control performance a variable damper - Magneto-Rheological Brake (MRB) is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control using neural network brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control using neural network and without regard for the changes of external inertia loads.

  • PDF

An analytical method for free vibration analysis of functionally graded sandwich beams

  • Bouakkaz, K.;Hadji, L.;Zouatnia, N.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.59-73
    • /
    • 2016
  • In this paper, a hyperbolic shear deformation beam theory is developed for free vibration analysis of functionally graded (FG) sandwich beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded sandwich beam are assumed to vary according to power law distribution of the volume fraction of the constituents. The core layer is still homogeneous and made of an isotropic material. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Illustrative examples are given to show the effects of varying gradients and thickness to length ratios on free vibration of functionally graded sandwich beams.

Removing the Motion Artifacts in the Pulse Signal Detected from the PFS Using the Quasi-periodicity (유사 주기성을 이용한 PFS 펄스 신호의 동잡음 제거)

  • Lee, Han-Wook;Chun, Joong-Chang;Jeong, Won-Geun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.591-598
    • /
    • 2016
  • For the mobile healthcare environment, it is important to measure the exact biomedical signals in real time, and another key point is to design mobile healthcare devices with low power consumption. In this paper, we propose a method in which the piezo film sensor(PFS), having a low power characteristic, is used to measure the pulse signal synchronized with the heart rate from the radial artery. The critical issue in the bio-signal processing is the existence of the motion artifacts. To dissolve this problem, we have applied the periodic moving average filter using the quasi-periodicity of the pulse signal in addition to the conventional method of the adaptive filtering using the reference signal. Results of simulation and experiments are presented to confirm that the quasi-periodicity of the PFS signal can be used to eliminate completely the motion artifacts which still appears after the adaptive filtering.

3-D vision sensor for arc welding industrial robot system with coordinated motion

  • Shigehiru, Yoshimitsu;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.382-387
    • /
    • 1992
  • In order to obtain desired arc welding performance, we already developed an arc welding robot system that enabled coordinated motions of dual arm robots. In this system one robot arm holds a welding target as a positioning device, and the other robot moves the welding torch. Concerning to such a dual arm robot system, the positioning accuracy of robots is one important problem, since nowadays conventional industrial robots unfortunately don't have enough absolute accuracy in position. In order to cope with this problem, our robot system employed teaching playback method, where absolute error are compensated by the operator's visual feedback. Due to this system, an ideal arc welding considering the posture of the welding target and the directions of the gravity has become possible. Another problem still remains, while we developed an original teaching method of the dual arm robots with coordinated motions. The problem is that manual teaching tasks are still tedious since they need fine movements with intensive attentions. Therefore, we developed a 3-dimensional vision guided robot control method for our welding robot system with coordinated motions. In this paper we show our 3-dimensional vision sensor to guide our arc welding robot system with coordinated motions. A sensing device is compactly designed and is mounted on the tip of the arc welding robot. The sensor detects the 3-dimensional shape of groove on the target work which needs to be weld. And the welding robot is controlled to trace the grooves with accuracy. The principle of the 3-dimensional measurement is depend on the slit-ray projection method. In order to realize a slit-ray projection method, two laser slit-ray projectors and one CCD TV camera are compactly mounted. Tactful image processing enabled 3-dimensional data processing without suffering from disturbance lights. The 3-dimensional information of the target groove is combined with the rough teaching data they are given by the operator in advance. Therefore, the teaching tasks are simplified

  • PDF

Macroblock-based Adaptive Interpolation Filter Method Using New Filter Selection Criterion in H.264/AVC (H.264/AVC에서 새로운 필터 선택 기준을 이용한 매크로 블록 기반 적응 보간 필터 방법)

  • Yoon, Kun-Su;Moon, Yong-Ho;Kim, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.312-320
    • /
    • 2008
  • The macroblock-based adaptive interpolation filter method has been considered to be able to achieve high coding efficiency in H.264/AVC. In this method, although the filter selection criterion considered in terms of rate and distortion have showed a good performance, it still leaves room for improvement. To improve high coding efficiency better than conventional method, we propose a new filter selection criterion which considers two bit rates, motion vector and prediction error, and reconstruction error. In addition, the algorithm for reducing the overhead of transmitting the selected filter information is presented. Experimental results show that the proposed method significantly improves the coding efficiency compared to ones using conventional criterion. It leads to about a 5.19% (1 reference frame) and 5.14% (5 reference frames) bit rate savings on average compared to H.264/AVC, respectively.

Doppler Velocity-based Dynamic Object Tracking and Rejection for Increasing Reliability of Radar Ego-Motion Estimation (레이더 에고 모션 추정 신뢰성 향상을 위한 도플러 속도 기반 동적 물체 추적 및 제거)

  • Park, Yeong Sang;Min, Kyoung-Wook;Choi, Jeong Dan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.218-232
    • /
    • 2022
  • Researches are underway to use a radar sensor, a sensor used for object recognition in vehicles, for position estimation. In particular, a method of classifying dynamic and static objects using the Doppler velocity, the output from the radar sensor, and calculating ego-motion using only static objects has been researched recently. Also, for the existing dynamic object classification, several methods using RANSAC or robust filtering has been proposed. Still, a classification method with higher performance is needed due to the nature of the position estimation, in which even a single failure causes large effects. Hence, in this paper, we propose a method to improve the classification performance compared to existing methods through tracking and filtering of dynamic objects. Additionally, the method used a GMPHD filter to maximize tracking performance. In effect, the method showed higher performance in terms of classification accuracy compared to existing methods, and especially shows that the failure of the RANSAC could be prevented.

Unusual Behavior Detection of Korean Cows using Motion Vector and SVDD in Video Surveillance System (움직임 벡터와 SVDD를 이용한 영상 감시 시스템에서 한우의 특이 행동 탐지)

  • Oh, Seunggeun;Park, Daihee;Chang, Honghee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.795-800
    • /
    • 2013
  • Early detection of oestrus in Korean cows is one of the important issues in maximizing the economic benefit. Although various methods have been proposed, we still need to improve the performance of the oestrus detection system. In this paper, we propose a video surveillance system which can detect unusual behavior of multiple cows including the mounting activity. The unusual behavior detection is to detect the dangerous or abnormal situations of cows in video coming in real time from a surveillance camera promptly and correctly. The prototype system for unusual behavior detection gets an input video from a fixed location camera, and uses the motion vector to represent the motion information of cows in video, and finally selects a SVDD (one of the most well-known types of one-class SVM) as a detector by reinterpreting the unusual behavior into an one class decision problem from the practical points of view. The experimental results with the videos obtained from a farm located in Jinju illustrate the efficiency of the proposed method.

3D motion aftereffect in a static region after adaptation to an adjacent counterphase flickering region (역 위상 깜박임 영역 순응에 의해 유도된 인접 영역의 3차원 운동잔여 효과)

  • 김정훈;남종호;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.10 no.3
    • /
    • pp.29-37
    • /
    • 1999
  • Murakami and Cavanagh (1998a,b, 1999) reported a jitter aftereffect in a static random noise after a period of adaptation to a patch of dynamic random noise. To a account for this phenomenon. they proposed the retinal slip caused by a small eye movements in the unadapted area, which is usually compensated by the visual system to stabilize images but is unsuppressed due to the adaptation. We tested this hypothesis with new experimental method and stimuli that were supposed to nullify or reduce the effect. However. the aftereffect was still observed even under these stimuls conditions More importantly, the perceived aftereffect was rather different from Murakami and Cavanagh's. After adaptation to a counterphase flickering cosine grating, the adjacent unadapted region seems to move away from the observer during the test period instead of jittering in the frontoparallel plane. We proposed a possible explanation for this new phenomenon noting the severe contrast reduction of the adapted region during flickering period. The aftereffect might be due to the flicker-inducing contrast reduction during adaptation that produces different depth planes for the adapted and unadapted region and its restoration during the test period.

  • PDF

Wavelet based video coding with spatial band coding (대역별 공간 부호화를 이용한 웨이블릿 기반 동영상 부호화)

  • Park, Min-Seon;Park, Sang-Ju
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.351-358
    • /
    • 2002
  • Video compression based on DCT (Discrete Cosine Transform) has weakpoints of blocking artifacts and pixel loss when the resolution is changed. DWT (Discrete Wavelet Transform) based method can overcome such problems. In SAMCoW (Scalable Adaptive Motion Compensation Wavelet), one of wavelet based video coding algorithm, both intra frames and motion compensated error frames are encoded using EZW(Embedded Zerotree Wavelet) algorithm. However the property of wavelets transform coefficients of motion compensated error frames are different from that of still images. Signal energy is not highly concentrated in the lower bands which is true for most still image cases. Signal energy is rather evenly distributed over all frequency bands. This paper suggests a new video coding algorithm utilizing these properties. Spatial band coding which is known to be very effective for encoding images with relative1y high frequency components and not utilizing the interband coefficients correlation is applied instead of EZW to encode both intra and inter frames. In spatial band coding, the position and value of significant wavelet coefficients in each band are progressively transmitted. Unlike EZW, inter band coefficients correlations are not utilized in spatial band coding. It has been shown that spatial band coding gives better performance than EZW when applied to wavelet based video compression.

Eye-Catcher : Real-time 2D/3D Mixed Contents Display System

  • Chang, Jin-Wook;Lee, Kyoung-Il;Park, Tae-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-54
    • /
    • 2008
  • In this paper, we propose a practical method for displaying 2D/True3D mixed contents in real-time. Many companies released their 3D display recently, but the costs of producing True3D contents are still very expensive. Since there are already a lot of 2D contents in the world and it is more effective to mix True3D objects into the 2D contents than making True3D contents directly, people became interested in mixing 2D/True3D contents. Moreover, real-time 2D/True3D mixing is helpful for 3D displays because the scenario of the contents can be easily changed on playback-time by adjusting the 3D effects and the motion of the True3D object interactively. In our system, True3D objects are rendered into multiple view-point images, which are composed with 2D contents by using depth information, and then they are multiplexed with pre-generated view masks. All the processes are performed on a graphics processor. We were still able to play a 2D/True3D mixed contents with Full HD resolution in real-time using a normal graphics processor.

  • PDF