• 제목/요약/키워드: Stiffness of damper

검색결과 331건 처리시간 0.022초

Optimization of base-isolated structure with negative stiffness tuned inerter damper targeting seismic response reduction

  • Jean Paul Irakoze;Shujin Li;Wuchuan Pu;Patrice Nyangi;Amedee Sibomana
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.399-415
    • /
    • 2023
  • In this study, we investigate the use of a negative stiffness tuned inerter damper system to improve the performance of a base-isolated structure. The negative stiffness tuned inerter damper system consists of a tuned inerter damper connected in parallel with a negative stiffness element. To find the optimal parameters for the base-isolated structure with negative stiffness tuned inerter damper system, we develop an optimization method based on performance criteria. The objective of the optimization is to minimize the superstructure acceleration response ratio, while ensuring that the base displacement response ratio remains below a specified target value. We evaluate the proposed method by conducting numerical analyses on an eight-story building. The structure is modeled using both a simplified 3-degree-of-freedom system and a more detailed story-by-story shear-beam model. Lastly, a comparative analysis using time history analysis is performed to compare the performance of the base-isolated structure with negative stiffness tuned inerter damper system with that of the base-isolated structure and base-isolated structure with tuned inerter damper systems. The results obtained from the comparative analysis show that the negative stiffness tuned inerter damper system outperforms the tuned inerter damper system in reducing the dynamic seismic response of the base-isolated structure. Overall, this study demonstrates that the negative stiffness tuned inerter damper system can effectively enhance the performance of base-isolated structures, providing improved seismic response reduction compared to other systems.

Analytical and numerical investigation of the cyclic behavior of angled U-shape damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.325-335
    • /
    • 2024
  • Yielding dampers exhibit varying cyclic behavior based on their geometry. These dampers not only increase the energy dissipation of the structure but also increase the strength and stiffness of the structure. In this study, parametric investigations were carried out to explore the impact of angled U-shape damper (AUSD) dimensions on its cyclic behavior. Initially, the numerical model was calibrated using the experimental specimen. Subsequently, analytical equations were presented to calculate the yield strength and elastic stiffness, which agreed with the experimental results. The outcomes of the parametric studies encompassed ultimate strength, effective stiffness, energy dissipation, and equivalent viscous damper ratio (EVDR). These output parameters were compared with similar dampers. Also, the magnitude of the effect of damper dimensions on the results was investigated. The results of parametric studies showed that the yield strength is independent of the damper width. The length and thickness of the damper have the greatest effect on the elastic stiffness. Reducing length and width resulted in increased energy dissipation, effective stiffness, and ultimate strength. Damper width had a more significant effect on EVDR than its length. On average, every 5 mm increase in damper thickness resulted in a 3.6 times increase in energy dissipation, 3 times the effective stiffness, and 3 times the ultimate strength of the model. Every 15 mm reduction in damper width and length increased energy dissipation by 14% and 24%, respectively.

Full-scale test of dampers for stay cable vibration mitigation and improvement measures

  • Zhou, Haijun;Xiang, Ning;Huang, Xigui;Sun, Limin;Xing, Feng;Zhou, Rui
    • Structural Monitoring and Maintenance
    • /
    • 제5권4호
    • /
    • pp.489-506
    • /
    • 2018
  • This paper reported test of full-scale cables attached with four types of dampers: viscous damper, passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. The logarithmic decrements of the cable with attached dampers were calculated from free vibration time history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum damping ratio were derived, which was very important for practical damper design and parameter optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. Approximate formulations were derived and verified using numerical solutions. The critical values for non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated mass was more effective than negative stiffness for higher vibration modes.

강판 스프링형 비틀림 진동댐퍼의 강성설계 연구 (A Study on the Stiffness Design for a Steel Spring Torsional Vibration Damper)

  • 이동환;정태영;김영철
    • 한국소음진동공학회논문집
    • /
    • 제23권11호
    • /
    • pp.996-1002
    • /
    • 2013
  • Conditions of stiffness for a steel spring torsional vibration damper are difficult and ambiguous. Nevertheless correct estimation of stiffness is essential and important in the damper design for the damper to activate properly in the field. In this paper, to build up the estimation method of steel spring torsional vibration damper a miniaturized model was developed for modelling between a spring and inner star of the damper. The method obtained from the results through the experiment and analysis of it was applied to the prototype torsional damper.

Design formulas for vibration control of taut cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie.F. Jr.;Ko, Jan-Ming;Fang, Yi
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.521-536
    • /
    • 2019
  • Using magnetorheological (MR) dampers in multiswitch open-loop control mode has been shown to be cost-effective for cable vibration mitigation. In this paper, a method for analyzing the damping performance of taut cables incorporating MR dampers in open-loop control mode is developed considering the effects of damping coefficient, damper stiffness, damper mass, and stiffness of the damper support. Making use of a three-element model of MR dampers and complex modal analysis, both numerical and asymptotic solutions are obtained. An analytical expression is obtained from the asymptotic solution to evaluate the equivalent damping ratio of the cable-damper system in the open-loop control mode. The individual and combined effects of the damping coefficient, damper stiffness, damper mass and stiffness of damper support on vibration control effectiveness are investigated in detail. The main thrust of the present study is to derive a general formula explicitly relating the normalized system damping ratio and the normalized damper parameters in consideration of all concerned effects, which can be easily used for the design of MR dampers to achieve optimal open-loop vibration control of taut cables.

Numerical and analytical investigation of cyclic behavior of D-Shape yielding damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari;Sasan Kiasat;Kaveh Cheraghi
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.411-420
    • /
    • 2024
  • The purpose of this research was to investigate the cyclic behavior of the D-shaped dampers (DSD). Similarly, at first, the numerical model was calibrated using the experimental sample. Then, parametric studies were conducted in order to investigate the effect of the radius and thickness of the damper on energy dissipation, effective and elastic stiffness, ultimate strength, and equivalent viscous damping ratio (EVDR). An analytical equation for the elastic stiffness of the DSD was also proposed, which showed good agreement with experimental results. Additionally, approximate equations were introduced to calculate the elastic and effective stiffness, ultimate strength, and energy dissipation. These equations were presented according to the curve fitting technique and based on numerical results. The results indicated that reducing the radius and increasing the thickness led to increased energy dissipation, effective stiffness, and ultimate strength of the damper. On the other hand, increasing the radius and thickness resulted in an increase in EVDR. Moreover, the ratio of effective stiffness to elastic stiffness also played a crucial role in increasing the EVDR. The thickness and radius of the damper were evaluated as the most effective dimensions for reducing energy dissipation and EVDR.

아웃리거 댐퍼시스템의 감쇠와 강성 변화에 따른 지진응답제어 성능평가 (Performance Evaluation of Seismic Response Control of Outrigger Damper System with Variation of Damping and Stiffness)

  • 이령경;김수진;이영락;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제16권3호
    • /
    • pp.107-115
    • /
    • 2016
  • In recent years, an outrigger damper system has been proposed to reduce dynamic responses of tall buildings. However, a study on outrigger damper system is still in its early stages. In this study, time history analysis was performed to investigate the dynamic response control performance of outrigger damper. To do this, a actual scale 3-dimensional tall building model with outrigger damper system has been developed. El Centro earthquake was applied as an earthquake excitation. The control performance of the outrigger damper system was evaluated by varying stiffness and damping values. Analysis results, on the top floor displacement response to the earthquake load, was greatly effected by damping value. And acceleration response greatly was effected by stiffness value of damper system. Therefore, it is necessary to select that proper stiffness and damping values of the outrigger damper system.

Development of tension estimation method without damper modeling error for cable with damper

  • Aiko Furukawa;Yuma Sugimachi;Tomohiro Takeichi
    • Structural Monitoring and Maintenance
    • /
    • 제11권2호
    • /
    • pp.127-148
    • /
    • 2024
  • Estimating cable tension is important in the maintenance of cable structures, such as cable-stayed bridges. In practice, the higher-order vibration method based on natural frequencies is used. In recent years, dampers have been installed onto cables to suppress aerodynamic vibration. Because the higher-order vibration method is suitable to cables without a damper, the damper must be removed before using this method. Because damper removal is time-consuming and labor-intensive, a previous study proposed a tension estimation method for a cable with a damper based on the natural frequencies, which does not require the damper's removal. However, the previous method relies on the modeling accuracy of the damper's complex stiffness. The damper design formula, while intended for design purposes, does not consistently reflect the damper's actual complex stiffness. Therefore, the estimation accuracy deteriorates when the damper's actual complex stiffness deviates from the damper design formula. With this background, this paper introduces a novel tension estimation method based on mode shapes, which circumvents damper modeling errors since mode shapes are independent of the damper's complex stiffness. In the numerical verification using 90 models, the proposed method estimated tension accurately with an estimation error within 0.59%. In the experimental verification, the proposed method estimated tension accurately with an estimation error within 4.17% except for one case, while the previous method had an estimation error of 44% when the damper design formula was used. The proposed method was found to be superior to the previous method in terms of accuracy and practicality by numerical simulation and experiment.

스프링-점성형 비틀림 진동댐퍼 설계 및 성능 평가에 관한 연구 (Design and Performance Evaluation of Spring-viscous Damper for Torsional Vibration)

  • 이동환;정태영;김영철;김흥섭
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1192-1198
    • /
    • 2011
  • Design routines of a torsional spring-viscous damper for a 1800 kW four cycle diesel engine-generator system are described. Modal techniques for system normalization and optimal equations for damper design are used to obtain proper design parameters of the damper. A prototype damper is manufactured according to the described design process and its two design parameters, stiffness and damping, are evaluated experimentally by torsional actuator test and free decay test. Experimentally obtained values of stiffness and damping coefficients showed good agreements with the designed values of the prototype damper.

Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation

  • Chu, Shih-Yu;Yeh, Shih-Wei;Lu, Lyan-Ywan;Peng, Chih-Hua
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.425-436
    • /
    • 2017
  • Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.