• 제목/요약/키워드: Stiffness of Transmission

검색결과 183건 처리시간 0.021초

Estimation of Hysteretic Interfacial Stiffness of Contact Surfaces

  • Kim, Nohyu
    • 비파괴검사학회지
    • /
    • 제33권3호
    • /
    • pp.276-282
    • /
    • 2013
  • This paper proposes an ultrasonic method for measurement of linear and hysteretic interfacial stiffness of contacting surfaces between two steel plates subjected to nominal compression pressure. Interfacial stiffness was evaluated by the reflection and transmission coefficients obtained from three consecutive reflection waves from solid-solid surface using the shear wave. A nonlinear hysteretic spring model was proposed and used to define the quantitative interfacial stiffness of interface with the reflection and transmission coefficients. Acoustic model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves and to determine the linear and nonlinear hysteretic interfacial stiffness. Two identical plates are put together to form a contacting surface and pressed by bolt-fastening to measure interfacial stiffness at different states of contact pressure. It is found from experiment that the linear and hysteretic interfacial stiffness are successfully determined by the reflection and transmission coefficient at the contact surfaces through ultrasonic pulse-echo measurement.

Effects of stiffness on reflection and transmission of micropolar thermoelastic waves at the interface between an elastic and micropolar generalized thermoelastic solid

  • Kumar, Rajneesh;Sharma, Nidhi;Ram, Paras
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.117-135
    • /
    • 2009
  • The reflection and transmission of micropolar thermoelastic plane waves at the interface between an elastic solid and micropolar generalized thermoelastic solid is discussed. The interface boundary conditions obtained contain interface stiffness (normal stiffness and transverse stiffness). The expressions for the reflection and transmission coefficients which are the ratios of the amplitudes of reflected and transmitted waves to the amplitude of incident waves are obtained for normal force stiffness, transverse force stiffness and welded contact. Numerical calculations have been performed for amplitude ratios of various reflected and transmitted waves. The variations of amplitude ratios with angle of incident wave have been depicted graphically. It is found that the amplitude ratios of reflected and transmitted waves are affected by the stiffness, micropolarity and thermal distribution of the media.

산업용 로봇 손목 동력 전달계의 동특성 해석 모델 연구 (A Study on the Dynamic Analysis Modeling of Industrial Robot's Wrist Power Transmission)

  • 김우형;정두한;최영삼;정진태;임흥순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.243-246
    • /
    • 2004
  • The dynamic characteristic of a wrist power transmission examine closely with mass property, to present the model which induce the vibration is ultimately the purpose. A robot wrist power transmission for analysis model got the mass property through the approach to be the experimental. A bearing equivalent stiffness which supports the axis and a gear contact equivalent stiffness are determined by the simplicity analysis model compared the result of the experiment. We calculate the vibration tendency of the robot wrist power transmission by an analysis tool which is called the RecurDyn. We compared it with a signal analysis experiment's which a robot operation happens which is based on the ambient noise.

  • PDF

동력전달용 타이밍벨트의 강성 개선 (Stiffness Improvement of Timing Belt in Power Transmission)

  • 이경연;변경석
    • 융합신호처리학회논문지
    • /
    • 제23권1호
    • /
    • pp.1-7
    • /
    • 2022
  • 타이밍벨트는 동력전달 요소로서 V벨트와 기어의 장점을 살린 톱니붙이 전동 벨트로서 미끄러지지 않고 소음도 적어 기구에서 회전축이나 직선 운동에서 동력을 전달할 때 동력 전달 장치로 사용되고 있다. 기어처럼 등간격의 홈을 가진 벨트 풀리와 홈에 정확히 맞물리도록 동일한 간격의 홈을 가진 타이밍 벨트를 통해 회전을 정확하게 전달할 수가 있다. 특히 출력축에 타이밍벨트가 사용된 메커니즘에서 타이밍벨트의 강성을 포함한 동적 특성이 시스템 전달 특성을 결정하게 되므로 그 중요성이 커진다. 본 논문에서는 제한된 범위의 움직임을 갖는 타이밍 벨트에 적용하여 강성을 증가시킬 수 있는 강성 강화 벨트를 제안하였다. 강성 강화 벨트의 동특성을 연구하기 위하여 강성 강화 벨트에 대한 운동방정식을 수립하고, 강성 강화 벨트에 대한 시뮬레이션 모델을 만들어 분석을 수행하였다. 운동 방정식과 시뮬레이션 모델의 분석 결과를 확인하기 위하여 강성 강화 벨트를 사용한 1축 회전 실험 장치를 제작하고 실험을 수행하였다. 운동 방정식, 시뮬레이션 모델, 실험을 통하여 제안한 강성 강화 벨트를 적용하면 타이밍벨트의 강성과 동특성을 개선할 수 있음을 확인하였다.

스페이서 강성과 간격이 송전선 갤러핑에 미치는 영향분석 (Effect Analysis of Spacer Stiffness and Interval on Galloping of Power Transmission Lines)

  • 오윤지;손정현
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.52-58
    • /
    • 2019
  • Due to icing and snow, power transmission lines have asymmetric cross sections, and their motion becomes unstable. At this time, the vibration caused by the wind is called galloping. If galloping is continuous, short circuits or ground faults may occur. It is possible to prevent galloping by installing spacers between transmission lines. In this study, the transmission line is modeled as a mass-spring-damper system by using RecurDyn. To analyze the dynamic behavior of the transmission line, the damping coefficient is derived from the free vibration test of the transmission line and Rayleigh damping theory. The drag and lift coefficient for modeling the wind load are calculated from the flow analysis by using ANSYS Fluent. Galloping simulations according to spacer stiffness and interval are carried out. It is found that when the stiffness is 100 N/m and the interval around the support is dense, the galloping phenomenon is reduced the most.

진동 절연계에서 절연요소 회전강성계수가 고주파수 대역 진동파워 전달에 미치는 영향 (Effects of Rotational Stiffness of Isolators on Vibration Power Transmission in Vibration Isolation Systems over High Frequency Range)

  • 김진성;이호정;김광준
    • 한국소음진동공학회논문집
    • /
    • 제13권5호
    • /
    • pp.375-383
    • /
    • 2003
  • For a performance analysis of vibration isolation systems, the concept of vibration power flow can be employed preferably when noise radiated from the supporting structure with finite impedances is of interest. The idea is basically simple to understand and formulas for precise estimation of the vibration power are easy to derive. However, It is often required to simplify the process of experimentation under several assumptions due to instrumental limitations. For an example, rotational degree of freedom has not been well treated in bending vibrations of beam or plate-like structures. Yet, several recent studies showed that the moments and rotations play an important role in power transmission and should be taken into consideration carefully as the frequency range of interest goes to audibly high. Therefore, it is readily agreed that reduction of the noise radiation over the high frequency range can be effectively accomplished by adjusting the rotational stiffness of the isolator without changing the vibration isolator efficiency in low frequency range relevant to the translational stiffness of the isolator In this paper, the vibration power flow approach is applied to an AC motor installed on a finite plate in order to illustrate the contribution of the rotational vibration power to the total vibration power transmission. The effects of rotational stiffness of the isolator on the vibration power transmission are investigated by inserting various shapes of Isolators with different rotational stiffness but with $ame translational stiffness between the motor and the plate. The resultant noise radiation from the plate is presented to verify the proposed approach.

Development of a Practical Two-Microphone Impedance Tube Method for Sound Transmission Loss Measurement of Sound Isolation Materials

  • Ro, Sing-Nam;Hwang, Yoon;Lee, Dong-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권3호
    • /
    • pp.105-113
    • /
    • 2003
  • This study developed a practical two-microphone impedance tube method to measure the sound transmission loss of sound isolation materials without the use of an expensive reverberation room or an acoustic intensity probe. In order to evaluate the validation and applicability of the two-microphone impedance tube method, sound transmission losses for several sound isolation materials with different surface density and bending stiffness were measured, and the measured values were compared with the results from the reverberation room method and the theory. From the experimental results, it was found that the accuracy of sound transmission loss obtained by the impedance tube method depends upon the diameter size of the impedance tube (i.e., tested sample size). For sound isolation materials having relatively large bending stiffness such as acryl, wood, and aluminum plates, it was found that the impedance tube method proposed by this study was not valid to measure the sound transmission loss. On the other hand, for sound isolation materials having relatively small bending stiffness such as rubber, polyvinyl, and asphalt sheets, the comparisons of transmission loss between the results from the impedance tube method and the theory showed a good agreement within the range of the frequencies satisfying the normal incidence mass law. Therefore, the two-microphone impedance tube method proposed by this study can be an effective measurement method to evaluate the sound transmission loss for soft sound isolation sheets having relatively small bending stiffness.

기어이의 변동물림강성을 고려한 비틀림진동해석 (Torsional Vibration Analysis of a Spur Gear Pair with the Variable Mesh Stiffness)

  • 류재완;한동철;최상현
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.99-108
    • /
    • 1999
  • A four-degree-of-freedom non-linear model with time varying mesh stiffness has been developed for the dynamic analysis of spur gear trains. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover. In the model, developed several factors such as time varying mesh stiffness and damping, separation of teeth, teeth collision, various gear errors and profile modifications have been considered. Two computer programs are developed to calculate stiffness of a gear pair and transmission error and the dynamic analysis of modeled system using time integration method. Dynamic tooth and mesh forces, dynamic factors are calculated. Numerical examples have been given, which shows the time varying mesh stiffness ha a significant effect upon the dynamic tooth force and torsional vibrations.

  • PDF

축과 베어링 변형을 고려한 헬리컬 기어의 전달오차 해석 (Transmission Error Analysis of Helical Gears in Consideration of Shaft and Bearing Deformation)

  • 박찬일;조도현
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2194-2200
    • /
    • 2002
  • Transmission error is highly related to gear noise. In order to predict the helical gear noise, transmission error analysis is needed. Up to now, the studies for the transmission error were conducted by the modeling of helical gears only. However, since helical gears are supported by the shaft and bearing, transmission error has the effects of the elements. In this study, the procedure to consider the shaft deformation with bearing stiffness for the transmission error analysis is proposed. To do so, the relationship between gear error and shaft deformation is analytically derived. Shaft deformation with bearing stiffness is analyzed by FEM. It is measured in the experimental test rig by the non-contact displacement sensors. Using the tooth error from tooth modification and the shaft deformation, the effects of shaft on the loaded transmission error are investigated.

제어기강성이 로봇관절의 진동에 미치는 영향 (The Effects of Controller Stiffness on the Vibration of Robot Joints)

  • 경현태;김재원;김문상
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.260-270
    • /
    • 1994
  • With the prevalent use of robot, the interests in moving speed of robot have been increasing for the purpose of upgrading performance of production. But the faster robot manipulator moves, the worse working accuracies are. And mechanical vibration is more and more serious with the increment of the moving speed of robot. So, the study on the cause and control method of robot vibration is one of the points of issue in robotics. This paper focuses on the vibration of 3 DOF parallel link drive mechanism robot. We assume that links of robot manipulator are `rigid' and joints are `flexible elements'. Governing equations of robot system including controller, servo amplifier, D.C servo motor, transmission with elasticity, and manipulator dynamics are derived. On the basis of modelling, we define `controller stiffness' by the proportional gain of controller and `stiffness of transmission'. Numerical and experimental research is performed to study vibration phenomena of robot induced from the variation of these two defined stiffnesses, and its results are shown.