• 제목/요약/키워드: Stiffness of Human Arm

검색결과 13건 처리시간 0.022초

여유구동을 지닌 인체의 능동스프링 현상에 대한 해석과 운동주파수 제어방식으로의 적용 (Analysis on Active spring effect in human-body having redundant actuation with application to motion frequency)

  • 이병주
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.977-989
    • /
    • 1999
  • The purpose of this study is to analyze how the human body having more muscles than its degree-of-freedom modulates an effective stiffness using redundant actuation, and to apply this concept to the design and control of advanced machines which requires adaptable spring. To investigate the adaptable stiffness phenomenon due to redundant actuation in the human body, this paper derives a general stiffness model of the Human body. In particular, for a planar 1 DOF human arm model, a planar 2 DOF human arm model, a spherical 3 DOF shoulder model, a 4 DOF human arm model, and a 7 DOF human arm model, the required nonlinear geometry ad the number of required actuator for successful modulation of the effective stiffness are analyzed along with a load distribution method for modulation of the required stiffness of such systems. Secondly, the concept of motion frequency modulation is introduced to show the usefulness of adaptive stiffness modulation. The motion frequency modulation represents a control of stiffness and / or inertia properties of systems. To show the effectiveness of the proposed algorithm, simulations are performed for 2 DOF anthropomorphic robot.

  • PDF

의수 소켓 설계를 위한 6축 인체 탄성도 측정 장치 개발 (Development of 6-Axis Stiffness Measurement Device for Prosthetic Socket Design)

  • 오동훈;이슬아;최영진
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.58-64
    • /
    • 2019
  • The paper proposes a stiffness measurement device composed of a measurement part including six indenters and a fixing part including four fixtures. The device is able to make simultaneously measurements of the stiffness of human arm. The six indenters make use of both position and force control schemes sequentially whenever needed. In addition, the loadcells and the digital encoders are attached to the indenters and electric motors, respectively, so that the data can be provided in real time. On the end of the indenter, two-axis potentiometer is attached in order to measure the angle difference between the applied force axis and the axis normal to the skin of human arm, and to convert the force measured on the loadcell into the actual applied force to skin. For this purpose, the mapping between the voltage output and the angle of potentiometer was obtained by fitting it for each axis. Ultimately, the measurement device was able to measure the stiffnesses of six regions of human arm.

Impedance characteristic of human arm for cooperative robot

  • Rahman, Mozasser;Ikeura, Ryojun;Mizutani, Kazuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.85.3-85
    • /
    • 2002
  • In this study, we tried to investigate the impedance characteristic of human arm in a cooperative task. Human arm was moved in a desired trajectory. The motion was actuated by a 1 degree-of-freedom robot system. As the muscle is mechanically analogous to a spring-damper system, a second-order equation was considered as the model for arm dynamics. In the model, inertia, stiffness and damping factor were considered. The impedance parameter was estimated from the position and torque data obtained from the experiment and based on the "Estimation of Parametric Model". It was found that the inertia is almost constant over the operational time. The damping factor and stiffness were high...

  • PDF

개인차 보상을 고려한 팔운동감의 정량화 방법 (Quantification Method of Kinesthetic Sense of Arm with Compensation for Individual Difference)

  • 정웅철;송재복;김용일
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.227-234
    • /
    • 2000
  • The human sensibility caused by the motion of an object grasped by a human operator is defined as kinesthetic sense of arm. Due to nonlinearity and ambiguity of human sense, there is no absolute standard for quantification of kinesthetic sense. In this research, a so-called 2-dimensional arm motion generator is developed to present various mechanical impedance (i.e., stiffness or damping) characteristics to a human arm. The kinesthetic words representing arm kinesthetic sense are selected and then the subject's satisfaction levels on these words for given impedance values are measured and processed by the SD method and factor analysis. In addition, the quantification method using neural network is proposed to take into account the individual difference between the mean sensibility and each subject's sensibility. Through this proposed algorithm, the sensibility of human motion described qualitatively can be converted into engineering data ensuring objectivity, reproducibility, and universality.

  • PDF

Analysis of Human Arm Movement During Vehicle Steering Maneuver

  • Tak, Tae-Oh;Kim, Kun-Young;Chun, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.444-451
    • /
    • 2005
  • The analysis of human arm motion during steering maneuver is carried out for investigation of man-machine interface of driver and steering system Each arm is modeled as interconnection of upper arm, lower arm, and hand by rotational joints that can properly represents permissible joint motion, and both arms are connected to a steering wheel through spring and damper at the contact points. The joint motion law during steering motion is determined through the measurement of each arm movement, and subsequent inverse kinematic analysis. Combining the joint motion law and inverse dynamic analysis, joint stiffness of arm is estimated. Arm dynamic analysis model for steering maneuver is setup, and is validated through the comparison with experimentally measured data, which shows relatively good agreement. To demonstrate the usefulness of the arm model, it is applied to study the effect of steering column angle on the steering motion.

인공신경망과 근전도를 이용한 인간의 관절 강성 예측 (Predicting the Human Multi-Joint Stiffness by Utilizing EMG and ANN)

  • 강병덕;김병찬;박신석;김현규
    • 로봇학회논문지
    • /
    • 제3권1호
    • /
    • pp.9-15
    • /
    • 2008
  • Unlike robotic systems, humans excel at a variety of tasks by utilizing their intrinsic impedance, force sensation, and tactile contact clues. By examining human strategy in arm impedance control, we may be able to teach robotic manipulators human''s superior motor skills in contact tasks. This paper develops a novel method for estimating and predicting the human joint impedance using the electromyogram(EMG) signals and limb position measurements. The EMG signal is the summation of MUAPs (motor unit action potentials). Determination of the relationship between the EMG signals and joint stiffness is difficult, due to irregularities and uncertainties of the EMG signals. In this research, an artificial neural network(ANN) model was developed to model the relation between the EMG and joint stiffness. The proposed method estimates and predicts the multi joint stiffness without complex calculation and specialized apparatus. The feasibility of the developed model was confirmed by experiments and simulations.

  • PDF

Human Arm Posture Control Using the Impedance Controllability of the Musculo-Skeletal System Against the Alteration of the Environments

  • Kim, Jaehyo;Makoto Sato;Yasuharu Koike
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.43-48
    • /
    • 2002
  • We show that humans execute the postural control ingeniously by regulating the impedance properties of the musculo-skeletal system as the motor command against the alteration of the environment. Adjusting muscle activity can control the impedance properties of the musculo-skeletal system. To quantify the changes in human arm viscoelasticity on the vertical plane during interaction with the environment, we asked our subject to hold an object. By utilizing surface electromyographic(EMG) studies, we determined a relationship between the perturbation and a time-varying muscle co-activation. Our study showed when the subject lifts the object by himself the muscle stiffness increases while the torque remains the same just before the lift-off. These results suggest that the central nervous system(CNS) simultaneously controls not only the equilibrium point(EP) and the torque, but also the muscle stiffness as themotor command in posture control during the contact task.

운동감의 정량화를 위한 감성공학적 기법 개발에 관한 연구 (A Study on Quantification of Kinesthetic Sense Using Human Sensibility Ergonomics Approach)

  • 신동윤;이세한;송재복;김용일
    • 대한인간공학회지
    • /
    • 제17권1호
    • /
    • pp.11-22
    • /
    • 1998
  • When grasping a movable object or making an object move, humans feel kinesthetic sense. The kinesthetic sense is the human sense that the human feels in response to the motion acted on him. The objective of the paper is to transform the kinesthetic sense associated with the human arm into the quantified data that are useful from the engineering viewpoint. A 2-dimensional motion generator composed of two linear motors was developed to provide various motion patterns. It can change its stiffness and damping values on the real-time basis by properly regulating the force generated by the linear motors. Based on Taguchi method, the most dominant factors to affect the kinesthetic sense were investigated. Also, a reference function adequate to quantify the kinesthetic sense was found. Based on this function, the effects of changes in stiffness and damping on the kinesthetic sense were investigated. Various tests show that the damping is a more dominant factor than the stiffness in forming the kinesthetic sense.

  • PDF

양방향 제어를 이용한 가상환경에서의 팔운동감 제시 (Reproduction of Arm Kinesthetic Sense in Virtual Environment Using Bilateral Control)

  • 정웅철;민두기;송재복;김용일
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1999년도 추계학술대회 논문집
    • /
    • pp.97-100
    • /
    • 1999
  • Human feels kinesthetic sense in response to the force acted on him. In order to represent kinesthetic sense, a force is analyzed as mechanical impedance (i.e., stiffness or damping) and implemented by active impedance control. In this research, a 3-dimensional arm motion generator is developed to present various mechanical impedance characteristics to an operator. An introduction of virtual reality provides not only a visual effect in virtual environment but also the change in force synchronized with the visual effect in real time.

  • PDF

중력 보상 팔 기능 지지대의 설계 및 제어 성능 평가 (Design and Evaluation of the Control Performance of a Compliant Arm Support)

  • 김상훈;정우석;박대근;구인욱;조규진
    • 한국정밀공학회지
    • /
    • 제34권2호
    • /
    • pp.115-123
    • /
    • 2017
  • This paper presents the design and the control performance of a novel dynamic compliant-arm support with parallel elastic actuators that was developed to assist with the daily living activities of those whose arms are compromised by muscular disease or the aging process. The parallel elastic-arm support consists of a compliant mechanism with combined passive and active components for human interaction and to reach the user's desired positions. The achievement of these tasks requires impedance control, which can change the virtual stiffness, damping coefficients, and equilibrium points of the system; however, the desired-position tracking by the impedance control is limited when the end-effector weight varies according to the equipping of diverse objects. A prompt algorithm regarding weight calibration and friction compensation is adopted to overcome this problem. A result comparison shows that, by accurately assessing the desired workspace, the proposed algorithm is more effective for the accomplishment of the desired activities.