• 제목/요약/키워드: Stiffness evaluation

검색결과 1,036건 처리시간 0.029초

The stiffness-degradation law of base metal after fatigue cracking in steel bridge deck

  • Liang Fang;Zhongqiu Fu;Bohai Ji;Xincheng Li
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.239-251
    • /
    • 2023
  • The stiffness evaluation of cracked base metal is of great guidance to fatigue crack reinforcement. By carrying out fatigue tests and numerical simulation of typical cracking details in steel box girder, the strain-degradation law of cracked base metal was analyzed and the relationship between base metal stress and its displacement (stiffness) was explored. The feasibility of evaluating the stress of cracked base metal based on the stress field at the crack tip was verified. The results demonstrate that the stiffness of cracked base metal shows the fast-to-slow degradation trend with fatigue cracking and the base metal at 50mm or more behind the crack tip basically lose its bearing capacity. Drilling will further accelerate stiffness degradation with the increase of hole diameters. The base metal stress has a negative linear relation with its displacement (stiffness), The stress of cracked base metal is also related to stress intensity factor and its relative position (distance, included angle) to the crack tip, through which the local stiffness can be effectively evaluated. Since the stiffness is not uniformly distributed along the cracked base metal, the reinforcement patch is suggested to be designed according to the stiffness to avoid excessive reinforcement for the areas incompletely unloaded.

등방성 및 복합재 플레이트용 16절점 요소의 강성행렬 계산 (Evaluation of Stiffness Matrix of 3-Dimensional Elements for Isotropic and Composite Plates)

  • 윤태혁;김정운;이재복
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2640-2652
    • /
    • 1994
  • The stiffness of 6-node isotropic element is stiffer than that of 8-node isotropic element of same configuration. This phenomenon was called 'Relative Stiffness Stiffening Phenomenon'. In this paper, an equation of sampling point modification which correct this phenomenon was derived for the composite plate, as well as an equation for an isotropic plate. The relative stiffness stiffening phenomena of an isotropic plate element could be corrected by modifying Gauss sampling points in the numerical integration of stiffness matrix. This technique could also be successfully applied to the static analyses of composite plate modeled by the 3-dimensional 16-node elements. We predicted theoretical errors of stiffness versus the number of layers that result from the reduction of numerical integration order. These errors coincide very well with the actual errors of stiffness. Therefore, we can choose full integration of reduced integration based upon the permissible error criterion and the number of layers by using the thoretically predicted error.

Comparison of methods to estimate storey stiffness and storey strength in buildings

  • A.R.Vijayanarayanan;M. Saravanan;M. Surendran
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.433-447
    • /
    • 2024
  • During earthquakes, regular buildings perform better than irregular buildings. In general, seismic design codes define a regular building using estimates of Storey Stiffness and Storey Strength. At present, seismic design codes do not recommend a specific method to estimate these parameters. Consequently, any method described in the literature can be applied to estimate the aforementioned parameters. Nevertheless, research has demonstrated that storey stiffness and storey strength vary depending on the estimation method employed. As a result, the same building can be regular or irregular, depending on the method employed to estimate storey stiffness and storey strength. Hence, there is a need to identify the best method to estimate storey stiffness and storey strength. For this purpose, the study presents a qualitative and quantitative evaluation of nine approaches used to determine storey stiffness. Similarly, the study compares six approaches for estimating storey strength. Subsequently, the study identifies the best method to estimate storey stiffness and storey strength using results of 350 linear time history analyses and 245 nonlinear time history analyses, respectively. Based on the comparison, it is concluded that the Fundamental Lateral Translational Mode Shape Method and Isolated Storey Method - A Particular Case are the best methods to estimate storey stiffness and storey strength of low-to-mid rise buildings, respectively.

콘크리트궤도의 궤도지지강성 평가시스템에 관한 연구 (A Study on Evaluation System of Track Support Stiffness for Concrete Tracks)

  • 최정열;김만화;김현수;정지승
    • 문화기술의 융합
    • /
    • 제6권2호
    • /
    • pp.535-541
    • /
    • 2020
  • 현행 탄성 재료 교체 및 성능평가는 작업성 및 작업공정이 매우 복잡하고 시간도 많이 소요됨은 물론 탄성 재료의 교체시기를 사전에 파악하기 어려운 반면, 본 연구에서 제시한 방법은 탄성 재료의 궤도지지강성 변화율을 상품 한계치와 기능 한계치를 비교 표시해 줌으로써 탄성 재료 교체의 필요성 및 교체 전, 후의 궤도지지강성 개선효과를 현장에서 즉각적으로 실험데이터를 바탕으로 입증이 가능하다. 또한 궤도지지강성 평가 소프트웨어를 이용하여 현장시험을 통해 획득한 탄성 재료에 대한 성능평가 데이터가 관리자 컴퓨터에 통합 관리되기 때문에 탄성재료의 교체시기 및 위치를 파악함으로써 교체 계획 수립 및 유지관리 이력 관리가 가능하다. 따라서 선로 순회하는 작업시간 동안 다수의 측점에서 탄성재료의 성능 및 상태를 현재 운영상태에서 궤도성능(궤도지지강성) 및 궤도재료의 내구성능(노후화 수준, 물성변화율 등)을 평가함으로써 시기적절하게 탄성재료를 교체할 수 있으며, 지속적으로 탄성재료의 성능변화(열화)상태를 모니터링 할 수 있어 궤도유지관리에 활용도가 높을 것으로 판단된다.

반복하중이 작용하는 고강도 모르타르 충전식 슬리브 철근이음에 대한 강성 평가 (Evaluation on Stiffness of High-strength Mortar-filled Sleeve Bar Splice Under Cyclic Loading)

  • 김형기;정구용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.85-93
    • /
    • 2013
  • 본 논문에서는 반복하중이 작용하는 고강도 모르타르 충전식 슬리브 철근이음의 강성에 대한 합리적인 검토를 하기 위하여 100여개 고강도 모르타르 충전식 슬리브 철근이음의 실험데이터를 이용하여 슬리브 철근이음이 보유하고 있는 구조인자가 반복 하중이 작용하는 슬리브 철근이음의 강성에 미치는 효과를 파악하였고, AIJ 규준에 정해져 있는 강성 등급을 충족시키는 최소한 의 조건에 대하여 평가한 결과, SD350과 SD400 철근을 매입한 모르타르 충전식 주물 슬리브 철근이음에서 $f_{g^*}$(L/d)가 470MPa 이상이 된다면 AIJ 규준의 SA급 강성, $f_{g^*}$(L/d)가 340MPa 이상이 된다면 AIJ 규준의 A급 강성을 최종파괴형식과 슬리브 형상에 상관없이 확보할 수 있는 것으로 나타났다. 또한 SD500 철근을 매입한 모르타르 충전식 슬리브 철근이음에서 주물슬리브와 강관 슬리브를 사용한 경우는 $f_{g^*}$(L/d)가 400MPa 이상이 된다면 AIJ 규준의 A급 강성을 확보할 수 있는 것으로 나타났다.

철근콘크리트 슬래브의 고유진동수 추정 (Estimation of Natural Frequency of Reinforced Concrete Slab)

  • 우운택
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권4호
    • /
    • pp.219-223
    • /
    • 2000
  • The evaluation of habitability to building vibration is conducted by the values of natural frequency, amplitude displacement, damping ratio. These values can be obtained from test or analytical results. Data acquisition through test may be possible in existing building, however, to estimate the serviceability of the building, it is necessary to evaluate those values at the stage of design. The natural frequency is important and basic factor for the evaluation of the serviceability. Calculation method of the effective stiffness in RC slab is proposed. To prove the efficiency of the proposed method, sample results of the analysis and the test are compared. These results proved that the effective width proposed to calculate the effective stiffness is proper to evaluate the natural frequency.

  • PDF

지반강성을 고려한 중저층 가새모멘트저항골조의 내진 목표성능평가 (Seismic Object Performance Evaluation of Braced Steel Moment Resisting Frames with Low Rise Building under Different Site Stiffness)

  • 김수정;최병정;박호영;이진우
    • 한국지진공학회논문집
    • /
    • 제20권2호
    • /
    • pp.91-101
    • /
    • 2016
  • This study is the compared seismic performance that are difference between the performance of structures on various site classes and beam-column connection. this analysis model was designed the previous earthquake load. To compare the performance levels of the structure was subjected to nonlinear static and nonlinear dynamic analysis. Nonlinear analysis was used to The Perform 3D program. Nonlinear static analysis was compared with the performance point and Nonlinear dynamic analysis was compared the drift ratio(%). Analysis results, the soft site class of the displacement was more increase than rock site classes of the displacement. Also The smaller the displacement was increased beam-column connection stiffness.

쿼드 분석법을 이용한 정련 견직물의 질감 변별 평가 (Sensorial Property Evaluation of Scoured Silk Fabrics Using Quad Analysis)

  • 김정진;김은애
    • 한국의류학회지
    • /
    • 제29권6호
    • /
    • pp.877-884
    • /
    • 2005
  • The importance and usefulness of a subjective evaluation of the sensorial properties of scoured silk fabrics is discussed. Silk fabric was treated at 12 different scouring rates and the scoured fabrics were used as specimens. Using paired comparisons, three trained subjects, evaluated seven subjective sensorial properties; softness, elasticity, drape, stiffness, crispness, and luster. A quad experimental design was adopted as an effective and reliable evaluation method. Results showed that some properties such as drape, luster were easily discriminated depending on the scouring rates whereas the smoothness was not easily discriminated. As the scouring rate increased, it was hard to discriminated the softness, drape, and stiffness, which indicates there is an optimum scouring rates to have a certain sensorial properties. It was suggested that these results should be applied to the manufacturing process.

판형 홀다운스프링 집합체의 탄성강성도 민감도 평가 (Evaluation of an elastic stiffness sensitivity of leaf type HDS)

  • 송기남
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1276-1290
    • /
    • 1997
  • The previous elastic stiffness formulas of leaf type holddown spring assemblies(HDSs) have been corrected and extended to be able to consider the point of taper runout for the TT-HDS and all the strain energies for both the TT-HDS and the TW-HDS based on Euler beam theory and Castigliano'stheorem. The elastic stiffness sensitivity of the leaf type holddown spring assemblies was analyzed using the derived elastic stiffness formulas and their gradient vectors obtained from the mid-point formula. As a result of the sensitivity analysis, the elastic stiffness sensitivity at each design variable is quantified and design variables having remarkable sensitivity are identified. Among the design variables, leaf thickness is identified as that of having the most remarkable sensitivity of the elastic stiffness. In addition, it was found that the sensitivity of the leaf type HDS's elastic stiffness is exponentially correlated to the leaf thickness.