• Title/Summary/Keyword: Stiffness Estimation

Search Result 346, Processing Time 0.044 seconds

Measurement of Dynamic Coefficients of Air Foil Bearing for High Speed Rotor by Using Impact Test (임팩트 테스트를 이용한 초고속 회전체용 공기 포일 베어링의 동특성 계수 측정)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • MTG(Micro turbine generator) operating at 400,000 rpm is under development and the impact test rig to measure the dynamic stiffness and damping coefficient of air foil bearing for high speed rotor is presented in this study. The stiffness and damping coefficient of air foil bearing depending on the rotational speed can be measured easily and effectively by using the simple configuration of impact test rig which is composed of air gun, gap sensors and high speed motor. The estimation results of stiffness and dampling coefficient using least square estimation method is presented as well.

Estimation of vehicle parameters using GPS/INS (GPS/INS 를 이용한 차량의 파라미터 추정)

  • Park, Gun-Hong;Chang, Yu-Shin;Ryu, Jae-Heon;Park, Seok-Hyun;Lee, Chun-Han;Hong, Sin-Pyo;Lee, Man-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1524-1529
    • /
    • 2003
  • In this paper deals with a unique method for measuring vehicle states such as body sideslip angle and tire sideslip angle using GPS velocity information in conjunction with other sensors. A method for integrating Inertial Navigation System (INS) sensors with GPS measurements to provide higher update rate estimates of the vehicle states is presented, and the method can be used to estimate the tire cornering stiffness. The experimental results for the GPS velocity-based sideslip angle measurement and cornering stiffness estimates are compared with the theoretical predictions. From the experimental results, it can be concluded that the proposed method has an advantage for future implementation in a vehicle safety system.

  • PDF

On analysis of nonlinear impedance force control for robot manipulators (로봇의 비선형 임피던스 힘제어에 대한 연구)

  • Jung, Seul;Lee, Ji-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.560-563
    • /
    • 1997
  • The conventional impedance control has been known to have the following problems: it has lack of specifying force directly and unknown environment stiffness has to be known priori in order to specify the reference trajectory. In this paper, new impedance force control that can control a desired force directly under unknown stiffness is proposed. A new nonlinear impedance function is developed based on estimation of unknown stiffness from force and position measurements. The nonlinear characteristics of the proposed impedance function are analyzed based on unknown environment position. Simulation studies with robot manipulator are carried out to test analytical results.

  • PDF

Joint parameter identification of a cantilever beam using sub-structure synthesis and multi-linear regression

  • Ingole, Sanjay B.;Chatterjee, Animesh
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.423-437
    • /
    • 2013
  • Complex structures are usually assembled from several substructures with joints connecting them together. These joints have significant effects on the dynamic behavior of the assembled structure and must be accurately modeled. In structural analysis, these joints are often simplified by assuming ideal boundary conditions. However, the dynamic behavior predicted on the basis of the simplified model may have significant errors. This has prompted the researchers to include the effect of joint stiffness in the structural model and to estimate the stiffness parameters using inverse dynamics. In the present work, structural joints have been modeled as a pair of translational and rotational springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is shown that using first few natural frequencies of the system, one can obtain a set of over-determined system of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been developed for a two parameter joint stiffness matrix.

Comparison of methods to estimate storey stiffness and storey strength in buildings

  • A.R.Vijayanarayanan;M. Saravanan;M. Surendran
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.433-447
    • /
    • 2024
  • During earthquakes, regular buildings perform better than irregular buildings. In general, seismic design codes define a regular building using estimates of Storey Stiffness and Storey Strength. At present, seismic design codes do not recommend a specific method to estimate these parameters. Consequently, any method described in the literature can be applied to estimate the aforementioned parameters. Nevertheless, research has demonstrated that storey stiffness and storey strength vary depending on the estimation method employed. As a result, the same building can be regular or irregular, depending on the method employed to estimate storey stiffness and storey strength. Hence, there is a need to identify the best method to estimate storey stiffness and storey strength. For this purpose, the study presents a qualitative and quantitative evaluation of nine approaches used to determine storey stiffness. Similarly, the study compares six approaches for estimating storey strength. Subsequently, the study identifies the best method to estimate storey stiffness and storey strength using results of 350 linear time history analyses and 245 nonlinear time history analyses, respectively. Based on the comparison, it is concluded that the Fundamental Lateral Translational Mode Shape Method and Isolated Storey Method - A Particular Case are the best methods to estimate storey stiffness and storey strength of low-to-mid rise buildings, respectively.

Evaluation of Gusset Plate Connection Stiffness in Braced Frames (가새 골조에서 거싯 플레이트 연결부의 강성 평가)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.105-113
    • /
    • 2009
  • To improve braced frame performance, the connection strength, stiffness, and ductility must be directly considered in the frame design. The resistance of the connection must be designed to resist seismic loads and to help provide the required system ductility. In addition, the connection stiffness affects the dynamic response and the deformation demands on the structural members and connections. In this paper, current design models for gusset plate connections are reviewed and evaluated usingthe results of past experiments. Current models are still not sufficient to provide adequate connection design guidelines and the actual stress and strain states in the gusset plate are very nonlinear and highly complex. Design engineers want simple models with beam and column elements to make an approximate estimation of system and connection performance. The simplified design models are developed and evaluated to predict connection stiffness and system behavior. These models produce reasonably accurate and reliable estimation of connection stiffness.

Development of Stiffness Estimation Algorithm for Nonlinear Static Analysis of Bilinear Material Model (이선형 재료모델의 비선형 정적해석을 위한 강성추정 알고리즘 개발)

  • Jung, Sung-Jin;Park, Se-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.620-626
    • /
    • 2016
  • Estimating the nonlinear seismic response of structure in earthquake engineering is important. Nonlinear static analysis is a typical method, and a variety of methods and techniques for estimating the stiffness of structural system at a certain analysis stage have been introduced and used in numerical structural analysis. On the other hand, such methods have many difficulties in practical usage because they use time-consuming iterative methods or simplified algorithms for calculating the structural stiffness at specific points in the time of nonlinear static analysis. For this reason, this study suggests an accurate and effective method for estimating the stiffness of a structure in nonlinear static analysis. For this goal, existing theories of an incremental step-by-step solution was investigated first. Subsequently, an algorithm available for calculating the precise stiffness of a structural system, each element of which has a bilinear material model, was developed based on the investigated methods. Finally, a computer program, sNs, was developed with the algorithm used.

Parameter Estimation of Two-mass System using Adaptive System and Acceleration Information. (적응시스템과 가속도정보를 이용한 이관성 시스템의 기계계 파라미터 추정)

  • 이준호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.232-236
    • /
    • 2000
  • In this paper a novel estimation algorithm of mechanical parameters in two-mass system is proposed. The inertia of a load and a motor and the stiffness are estimated by using RLS (Recursive Least Square) algorithm and acceleration information of motor. The effectiveness of the proposed scheme is verified with simulation and experiments results.

  • PDF