• Title/Summary/Keyword: Stiffness Estimation

Search Result 345, Processing Time 0.029 seconds

Estimation of semi-rigid joints by cross modal strain energy method

  • Wang, Shuqing;Zhang, Min;Liu, Fushun
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.757-771
    • /
    • 2013
  • We present a semi-rigid connection estimation method by using cross modal strain energy method. While rigid or pinned assumptions are adopted for steel frames in traditional modeling via finite element method, the actual behavior of the connections is usually neither. Semi-rigid joints enable connections to be modeled as partially restrained, which improves the quality of the model. To identify the connection stiffness and update the FE model, a newly-developed cross modal strain energy (CMSE) method is extended to incorporate the connection stiffness estimation. Meanwhile, the relations between the correction coefficients for the CMSE method are derived, which enables less modal information to be used in the estimation procedure. To illustrate the capability of the proposed parameter estimation algorithm, a four-story frame structure is demonstrated in the numerical studies. Several cases, including Semi-rigid joint(s) on single connection and on multi-connections, without and with measurement noise, are investigated. Numerical results indicate that an excellent updating is achievable and the connection stiffness can be estimated by CMSE method.

Health Monitoring Method for Bridges Using Ambient Vibration Data due to Traffic Loads (교통하중에 의한 상시미진동을 이용한 교량의 건전도 감시기법)

  • 이종원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.218-225
    • /
    • 2000
  • This paper presents intermediate results of an on-going research for identification of the modal and the stiffness parameters of a bridge based on the ambient vibration data caused by the traffic loadings. The main algorithms consist of the random decrement method incorporating band-pass filters for estimation of the free vibration signals the cross spectral density method for identification of the modal parameters and the neural networks technique for estimation of the element-level stiffness changes. An experimental study is carried out on a scaled bridge model with a composite section subjected to various moving vehicle loadings. Vertical accelerations are measured at several locations on the girder. The estimated frequencies and mode shapes are found to be well-compared with those obtained from the impact tests. The estimated stiffness changes using the neural networks are found to be very good for the case with the simulated data. However the accuracy is found to be not quite satisfactory for the case with the experimental data particularly for the small value of the stiffness changes.

  • PDF

A Study on the Stiffness Design for a Steel Spring Torsional Vibration Damper (강판 스프링형 비틀림 진동댐퍼의 강성설계 연구)

  • Lee, D.H.;Chung, T.Y.;Kim, Y.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.996-1002
    • /
    • 2013
  • Conditions of stiffness for a steel spring torsional vibration damper are difficult and ambiguous. Nevertheless correct estimation of stiffness is essential and important in the damper design for the damper to activate properly in the field. In this paper, to build up the estimation method of steel spring torsional vibration damper a miniaturized model was developed for modelling between a spring and inner star of the damper. The method obtained from the results through the experiment and analysis of it was applied to the prototype torsional damper.

Modeling of Feed Drive System Considering Combined Stiffness with Longitudinal And Twist Direction (볼스크류의 축-비틀림 복합강성을 고려한 이송계 모델링)

  • 이찬홍;박천홍;노승국;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.387-390
    • /
    • 2002
  • In machine tools, the stiffness of feed drive system is very important for high speed and accurate operation. The ball screw driven feed system has small friction, so the longitudinal and twist stiffness are connected directly and affected by each other. As the longitudinal and twist stiffness are participated in total stiffness of feeding system by about ratio of 4:1, the combined stiffness is necessary to compute when stiffness of feed system is estimated. In this paper, calculation of this combined stiffness is derived and applied for an actual ballscrew fled drive system. The static stiffness and 1 st natural frequency of the feed system is measured, and it is proved the difference between estimation and experiment result is less than 6%.

  • PDF

A dynamic finite element method for the estimation of cable tension

  • Huang, Yonghui;Gan, Quan;Huang, Shiping;Wang, Ronghui
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.399-408
    • /
    • 2018
  • Cable supported structures have been widely used in civil engineering. Cable tension estimation has great importance in cable supported structures' analysis, ranging from design to construction and from inspection to maintenance. Even though the Bernoulli-Euler beam element is commonly used in the traditional finite element method for calculation of frequency and cable tension estimation, many elements must be meshed to achieve accurate results, leading to expensive computation. To improve the accuracy and efficiency, a dynamic finite element method for estimation of cable tension is proposed. In this method, following the dynamic stiffness matrix method, frequency-dependent shape functions are adopted to derive the stiffness and mass matrices of an exact beam element that can be used for natural frequency calculation and cable tension estimation. An iterative algorithm is used for the exact beam element to determine both the exact natural frequencies and the cable tension. Illustrative examples show that, compared with the cable tension estimation method using the conventional beam element, the proposed method has a distinct advantage regarding the accuracy and the computational time.

Estimation of Hysteretic Interfacial Stiffness of Contact Surfaces

  • Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • This paper proposes an ultrasonic method for measurement of linear and hysteretic interfacial stiffness of contacting surfaces between two steel plates subjected to nominal compression pressure. Interfacial stiffness was evaluated by the reflection and transmission coefficients obtained from three consecutive reflection waves from solid-solid surface using the shear wave. A nonlinear hysteretic spring model was proposed and used to define the quantitative interfacial stiffness of interface with the reflection and transmission coefficients. Acoustic model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves and to determine the linear and nonlinear hysteretic interfacial stiffness. Two identical plates are put together to form a contacting surface and pressed by bolt-fastening to measure interfacial stiffness at different states of contact pressure. It is found from experiment that the linear and hysteretic interfacial stiffness are successfully determined by the reflection and transmission coefficient at the contact surfaces through ultrasonic pulse-echo measurement.

Estimation of Hysteretic Behaviors of a Seismic Isolator Using a Regularized Output Error Estimator (정규화된 OEE를 이용한 지진격리장치의 이력거동 추정)

  • 박현우;전영선;서정문
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.85-92
    • /
    • 2003
  • Hysteretic behaviors of a seismic isolator are identified by using the regularized output error estimator (OEE) based on the secant stiffness model. A proper regularity condition of tangent stiffness for the current OEE is proposed considering the regularity condition of Duhem hysteretic operator. The proposed regularity condition is defined by 12-norm of the tangent stiffness with respect to time. The secant stiffness model for the OEE is obtained by approximating the tangent stiffness under the proposed regularity condition by the secant stiffness at each time step. A least square method is employed to minimize the difference between the calculated response and measured response for the OEE. The regularity condition of the secant stiffness is utilized to alleviate ill-posedness of the OEE and to yield numerically stable solutions through the regularization technique. An optimal regularization factor determined by geometric mean scheme (GMS) is used to yield appropriate regularization effects on the OEE.

  • PDF

Road noise improvement using Drive Point Dynamic Stiffness(DPDS) estimation (Drive Point Dynamic Stiffness(DPDS)분석을 통한 Road noise 개선)

  • Lee, Sang-Yun;Kim, Young-Ho;Lee, Keun-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.612-616
    • /
    • 2007
  • This paper describes a procedure to improve road noise using DPDS estimation. We can estimate a body local stiffness at chassis mounting point where the path of road input vibration by DPDS with experiment and FE simulation. DPDS result from FE model has a good correlation with experiment data. FE model DPDS shows weak points among chassis mounting points. Body panel thickness and shape were changed to meet DPDS target. Improved DPDS of critical points makes a road noise level lower.

  • PDF