• Title/Summary/Keyword: Stiffness Effect

Search Result 2,330, Processing Time 0.026 seconds

Joint parameter identification of a cantilever beam using sub-structure synthesis and multi-linear regression

  • Ingole, Sanjay B.;Chatterjee, Animesh
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.423-437
    • /
    • 2013
  • Complex structures are usually assembled from several substructures with joints connecting them together. These joints have significant effects on the dynamic behavior of the assembled structure and must be accurately modeled. In structural analysis, these joints are often simplified by assuming ideal boundary conditions. However, the dynamic behavior predicted on the basis of the simplified model may have significant errors. This has prompted the researchers to include the effect of joint stiffness in the structural model and to estimate the stiffness parameters using inverse dynamics. In the present work, structural joints have been modeled as a pair of translational and rotational springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is shown that using first few natural frequencies of the system, one can obtain a set of over-determined system of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been developed for a two parameter joint stiffness matrix.

Experimental Study on the Variation of Track Stiffness between Earthwork and Bridge (교량 토공 접속부에서 궤도강성변화에 대한 실험적 연구)

  • 나성훈;서사범;손기준;김정환
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.281-288
    • /
    • 2001
  • In order to evaluate the effect of impact load at support stiffness transition area, the field estimations are performed at the transition zone between earthwork and bridge on test operation of KTX. Due to differential settlement caused by the variations of track support stiffness, large impact forces are investigated. However, the measured values such as wheel load, rail stress, displacement and acceleration in the transition area shows that the stiffness changes in the transition area are not abrupt, and the stiffness in the infra track structure varies continuously. In this experimental study, the parameters influencing safety of transition area are not governed by partial or local stiffness because cumulative passing loads are not sufficient on test operation of KTX.

  • PDF

Effect of Neuro Dynamic Technique and Instrument Assisted Soft Tissue Mobilization on Lower Extremity Muscle Tone, Stiffness, Static Balance in Stroke Patients

  • Kim, Myeong-Jun;Kim, Tae-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.6
    • /
    • pp.359-364
    • /
    • 2020
  • Purpose: This study was undertaken to compare the efficacy of instrument assisted soft tissue mobilization (IASTM) and a neural dynamic technique (NDYT). As an intervention to treat spastic lower limb muscle tone, stiffness, and static balance in stroke patients. Methods: Totally, 26 participants were assigned randomly to two groups: the IASTM (n=13) and NDYT (n=13) groups. Both groups were subjected to their respective technique for 15 minutes, 5 times a week, for 6 weeks. Muscle tone, stiffness, and static balance were evaluated before and after training, to compare both group changes. Results: IASTM group showed significant decrease in the gastrocnemius medial region and semitendinosus muscle tone and stiffness (p<0.05) compare to NDYT group; however, no significant different was observed in static balance between groups (p>0.05). Conclusion: The results suggest that IASTM is an effective method for decreasing the muscle tone and stiffness in acute stroke patients.

Nonlinear Analysis of Gear Drive System due to Misalignment (정렬불량에 의한 기어 구동계 비선형 해석)

  • Lee, B.H.;Choi, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.31-36
    • /
    • 2002
  • Even through the problem of misalignment is of great importance, not much work has been reported in the literature on the effect of misalignment on the vibrations of the gear-bearing systems. Therefore, the nonlinear dynamic characteristics of the gear drive system due to misalignment are investigated in this work. Transmission error for helical gear and bearing nonlinear stiffness is calculated. The equation of motion of the gear drive system is modelled using the time-varying gear meshing stiffness, bearing nonlinear stiffness, and bearing pre-load due to the housing deformation. Numerical analysis lot the gear drive system show the result of misalignment effect - sub-harmonic component, bearing pre-load effect, and another nonlinear phenomenon. And the numerical analysis are verified by the experimental result.

  • PDF

A Study on Composite Ground Effects of Sand Piles (샌드파일 설치지반에서의 복합지반효과)

  • 천병식;여유현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.397-404
    • /
    • 2001
  • Sand pile is one of the widely used ground improvement methods. Sand pile improved ground will have composite ground effects, even though the primary purpose is the accelerated consolidation. However, the consolidation of sand pile improved ground as a composite ground is substantially under developed. This study investigate the effect of composite ground for relatively low volume displacement sand piles. Plate bearing tests and earth pressure cell measurements are performed. It turned out that the contribution of sand pile as a load bearing mechanism is not substantial. However the bearing capacity of the surrounding clayey soil is increased by sixty percent, and it cause the stiffness change during consolidation. Therefore it is expected that, the effect of increased stiffness of sand pile improved ground is influenced by change of ground stiffness.

  • PDF

Seismic Response Enhancement through Stiffness Connection of Two Adjacent Buildings equipped with ATMD (ATMD가 설치된 두 인접빌딩간 강성연결방식을 통한 내진성능 개선)

  • Park, Kwan-Soon;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.47-53
    • /
    • 2017
  • In this study, we propose a new control system that effectively utilizes the interaction effect of control force through the connection of stiffness member for seismic performance enhancement of two adjacent structures equipped with active tuned mass damper (ATMD). The efficiency of the proposed control system is verified by comparing with the existing independent control system through the numerical simulations of the 10th- and 12th-story buildings. From the numerical results, it is confirmed that the proposed method can show similar or better control performance even with more economical control capacity than the existing independent control system. Another advantage is that the existing system does not exhibit the adaptive control performance in emergency of failure of one control device, whereas the proposed system can achieve successful adaptive control performance by economically and efficiently utilizing the interacting control effect through the connection member.

Analysis of the Effect of Contact Stiffness on the Out-of-plane Motion of a Disc Brake System using 2-DOE Model (2자유도 모텔을 이용한 디스크 브레이크의 면외 운동에 미치는 접촉강성의 영향 분석)

  • 신기홍;조용구;차병규;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.160-167
    • /
    • 2004
  • A two degree-of-freedom mathematical model is presented to investigate the friction mechanism of a disc brake system. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The model with the contact parameter is considered under the assumption that the out-of-plane motion depends on the friction force along the in-plane motion. In order to describe the relationship between the friction force and the out-of plane motion, the dynamic friction coefficient is considered as a function of both relative velocity and normal farce. Using this friction law, a contact stiffness matrix along the normal direction can be obtained. The out-of-plane motion is then investigated by both the stability analysis and the numerical analysis for various parametric conditions. The results show that the stiffness parameters of the pad and the disc must be controlled at the same time. Also, the numerical analysis shows the existence of limit cycle caused by the effect of intermittent contact stiffness.

Effect of Anchorage Number on Behavior of Reinforced Concrete Beams Strengthened with Glass Fiber Plates

  • Kaya, Mustafa;Kankal, Zeynel Cagdas
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.415-425
    • /
    • 2015
  • Reinforced concrete beams with insufficient shear reinforcement were strengthened using glass fiber reinforced polymer (GFRP) plates. In the study, the effect of the number of bolts on the load capacity, energy dissipation, and stiffness of reinforced concrete beams were investigated by using anchor bolt of different numbers. Three strengthened with GFRP specimens, one flexural reference specimen designed in accordance to Regulation on Buildings Constructed in Disaster Areas rules, and one shear reinforcement insufficient reference specimen was tested. Anchorage was made on the surfaces of the beams in strengthened specimens using 2, 3 and 4 bolts respectively. All beams were tested under monotonic loads. Results obtained from the tests of strengthened concrete beams were compared with the result of good flexural reference specimen. The beam in which 4 bolts were used in adhering GFRP plates on beam surfaces carried approximately equal loads with the beam named as a flexural reference. The amount of energy dissipated by strengthened DE5 specimen was 96 % of the amount of energy dissipated by DE1 reference specimen. Strengthened DE5 specimen initial stiffness equal to DE1 reference specimen initial stiffness, but strengthened DE5 specimen yield stiffness about 4 % lower than DE1 reference specimen yield stiffness. Also, DE5 specimen exhibited ductile behavior and was fractured due to bending fracture. Upon the increase of the number of anchorages used in a strengthening collapsing manner of test specimens changed and load capacity and ductility thereof increased.

Effect of creep and shrinkage in a class of composite frame - shear wall systems

  • Sharma, R.K.;Maru, Savita;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.333-348
    • /
    • 2003
  • The behaviour of composite frame - shear wall systems with regard to creep and shrinkage with high beam stiffness has been largely unattended until recently since no procedure has been available. Recently an accurate procedure, termed the Consistent Procedure (CP), has been developed which is applicable for low as well as for high beam stiffness. In this paper, CP is adapted for a class of composite frame - shear wall systems comprising of steel columns and R.C. shear walls. Studies are reported for the composite systems with high as well as low beam stiffness. It is shown that considerable load redistribution occurs between the R.C. shear wall and the steel columns and additional moments occur in beams. The magnitude of the load redistribution and the additional moment in the beams depend on the stiffness of the beams. It is also shown that the effect of creep and shrinkage are greater for the composite frame - shear wall system than for the equivalent R.C. frame - shear wall system.

Stiffness effect of the lamination pressing force for laminated rotor (적층된 로터에서 적층판 압착력의 강성 효과)

  • 김영춘;박철현;박희주;문태선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.565-568
    • /
    • 2002
  • A lot of rotating machines are being used in the industrial world and electric motor and generator take the most part of it. When it comes to the electric motor and generator, we can not help thinking about the eddy current because it brings a loss of electric and can be a important reason of the heat generation. To attenuate eddy current. laminated silicon steel sheets are being used in general. Especially, laminated rotor is being used for rotating part of the electric motor and generator and it decreases electrical loss and heat generation but we can be faced with another problem. In general, most of the motor and generator can be normally operated under 3600rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed. large scale and high precision in industrial world. The critical speed can be determined from the inertia and stiffness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape. lamination material and shape. insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method.

  • PDF