• 제목/요약/키워드: Stiffness Effect

검색결과 2,339건 처리시간 0.033초

두께가 얇은 단면을 갖는 보의 진동특성 (Vibration Characteristics of Thin-Walled Beams)

  • 오상진;이재영;모정만;박광규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.709-712
    • /
    • 2004
  • A study of the coupled flexural-torsional vibrations of thin-walled beams with monosymmetric cross-section is presented. The governing differential equations for free vibration of such beams are solved numerically to obtain natural frequencies and their corresponding mode shapes. The beam model is based on the Bernoulli-Euler beam theory and the effect of warping is taken into consideration. Numerical results are given for two specific examples of beams with free-free, clamped-free, hinged-hinged, clamped-hinged and clamped-clamped end constraints both including and excluding the effect of warping stiffness. The effect of warping stiffness on the natural frequencies and mode shapes is discussed and it is concluded that substantial error can be incurred if the effect is ignored.

  • PDF

성토지지말뚝공법의 아치형 응력전달구조 변화에 대한 수치해석적 분석 (Transformation of Load Transfer Soil Arch in Geosynthetics-Reinforced Piled Embankment: A Numerical Approach)

  • 이태희;이수형;이일화;정영훈
    • 한국지반공학회논문집
    • /
    • 제32권6호
    • /
    • pp.5-16
    • /
    • 2016
  • 성토지지말뚝공법에서 연약지반 강성, 성토체의 내부마찰각, 토목섬유의 인장강성, 성토고의 변화가 한계높이로 표현되는 하중 전이 흙 아치의 형태에 어떠한 영향을 미치는지 수치해석적으로 분석하였다. 매개변수 해석결과에서 연약지반 강성이 한계높이에 가장 큰 영향을 미쳤다. 주 영향요소인 연약지반 강성과 다른 매개변수의 조합에 대해 한계높이가 어떻게 변화하는지 등고선도 형태의 도표를 제시하고 분석하였다. 해석 결과는 연약지반 강성과 성토고의 조합에 대해 한계높이가 매우 민감하게 변함을 보였다. 연약지반 강성이 충분히 낮은 조건에서 성토체의 내부마찰각에 대해 한계높이가 민감하게 변하였다. 토목섬유가 포설된 조건에서는 토목섬유 인장강성의 변화가 한계높이 변화에 큰 영향을 주지 않았다.

시스템 동바리의 수직재와 수평재 연결부 경계조건에 따른 거동 분석 (Structural Behavior Analysis of System Supports according to Boundary Condition of Joints between Vertical and Horizontal Members)

  • 김경윤;원정훈;김상효
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.60-65
    • /
    • 2017
  • This study examined the effect of rotational stiffness of joints between vertical and horizontal members in system supports. In order to prevent repeated disasters of system supports, it is important to examine the accurate behavior of system supports. Among various factors affecting the complex behavior of system supports, this study focused on the stiffness of joints between vertical and horizontal members. The considered joint was modelled by a rotational spring, but the translational displacements were fixed. The stiffness of rotational spring was calculated by utilizing the usable experimental data. In addition, the hinge connection condition, which is generally considered in design and only restrict the translational displacements, was modelled to compare the results. The case with the rotational stiffness in joints showed 3.5 times buckling loads compared to the case without the rotational stiffness. Thus, the structural behavior of the vertical member in system supports was similar to the vertical member with the fixed condition. For the combined stresses of vertical members, the combined stress ratios were reduced 5~6% by considering the rotational stiffness of connecting parts. However, for the horizontal member where showed relatively small stress range, the stresses were increased 2.3~7.6 times by considering the rotational stiffness in connecting parts.

TWB 판넬의 기계적특성 평가에 관한 연구 (A Study on the Evaluation of Mechanical Characteristics for Tailor Welded Blank Panel)

  • 천창환;한창석
    • 열처리공학회지
    • /
    • 제23권4호
    • /
    • pp.183-190
    • /
    • 2010
  • There are many methods to reduce the weight and the cost of the automobile body, among them, Tailor Welded Blank (TWB) is new welding method applied to body structure. It is necessary to evaluate mechanical properties of TWB structures or sheets for the application to automobile body parts. In this study, the stiffness of T-type and L-type joint structures, composite of TWB panel, which simplified two portions of side structure in automobile body were investigated. Additionally, the fatigue properties of TWB panels were obtained. Two types of welding technologies, laser and mash seam welding, were used to join mild panels with different thickness. This results are compared with conventional structures. The results are as follows: 1) The stiffness of joint structures, composite of TWB panel, is approximately 17% higher than that of conventional ones. 2) The location of welding line in TWB had a effect on the in plane bending stiffness, but not on the out of plane bending stiffness. 3) In terms of welding technology type, the mash seam welding show higher stiffness than the laser welding for in plane bending stiffness. But minimal differences in both types are revealed for out of plane bending stiffness. 4) The fatigue strength, composite of TWB panel, is lower than that of base steel. It is thought that defects in the welding zone had the action of notch in the fatigue test.

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

Effects of reinforcement on two-dimensional soil arching development under localized surface loading

  • Geye Li;Chao Xu;Panpan Shen;Jie Han;Xingya Zhang
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.341-358
    • /
    • 2024
  • This paper reports several plane-strain trapdoor tests conducted to investigate the effects of reinforcement on soil arching development under localized surface loading with a loading plate width three times the trapdoor width. An analogical soil composed of aluminum rods with three different diameters was used as the backfill and Kraft paper with two different stiffness values was used as the reinforcement material. Four reinforcement arrangements were investigated: (1) no reinforcement, (2) one low stiffness reinforcement R1, (3) one high stiffness reinforcement R2, and (4) two low stiffness reinforcements R1 with a backfill layer in between. The stiffness of R2 was approximately twice that of R1; therefore, two R1 had approximately the same total stiffness as one R2. Test results indicate that the use of reinforcement minimized soil arching degradation under localized surface loading. Soil arching with reinforcement degraded more at unloading stages as compared to that at loading stages. The use of stiffer reinforcement had the advantages of more effectively minimizing soil arching degradation. As compared to one high stiffness reinforcement layer, two low stiffness reinforcement layers with a backfill layer of certain thickness in between promoted soil arching under localized surface loading. Due to different states of soil arching development with and without reinforcement, an analytical multi-stage soil arching model available in the literature was selected in this study to calculate the average vertical pressures acting on the trapdoor or on the deflected reinforcement section under both the backfill self-weight and localized surface loading.

축력비 및 부재강성에 따른 강구조 대칭형 비가새 골조의 열화특성 (Degradation Characteristics of Symmetric Unbraced Steel Frames According to Variations of Member Stiffness and Axial ratio)

  • 이명재;김희동;임유하
    • 한국강구조학회 논문집
    • /
    • 제23권3호
    • /
    • pp.327-335
    • /
    • 2011
  • 본 연구의 목적은 강구조 비가새 골조의 열화특성에 영향을 미치는 구조적 인자들을 해석적인 방법으로 평가하고 설계 초기 단계에서 열화 현상을 근사적으로 평가할 수 있는 방안을 제안하는데 있다. 해석적 연구를 위해 arc length method를 적용한 2차원 2차 수정 소성힌지 해석법을 적용하였으며, 단층 단스팬 골조와 다층 단스팬, 다층 다스팬 골조에 대해 해석을 수행하였다. 해석의 주요 변수로는 축력비와 기둥 보의 강성변화를 적용하였다. 연구 결과 무차원 열화강성은 부재의 강성과 축력비에 모두 영향을 받는 것으로 나타났으나, 축력비가 열화강성에 주는 영향이 더욱 큰 것으로 나타났다. 이를 바탕으로 축력비를 변수로 한 열화 강성 평가식을 제안하였다.

설계변수에 대한 샌드위치 보의 파손하중 (Influence of Design Variables on Failure Loads of Sandwich Beam)

  • Jongman Kim
    • Composites Research
    • /
    • 제16권3호
    • /
    • pp.18-24
    • /
    • 2003
  • 샌드위치 구조물들은 적은 무게의 첨가로 높은 강성(stiffness)을 요구하는 조선업에 널리 사용되어져 왔다. 국부하중 조건 하에서 샌드위치 구조물에 대한 디자인 변수들을 고려하는 것은 중요시되어졌다. 이 연구는 샌드위치 보의 강도에 대한 core층의 밀도, core층의 두께 그리고 face층의 두께 비율의 영향을 기술하였다. 이차원 탄성이론에 바탕을 둔 파손 하중은 AS4/3501-6 facing과 polyurethane foam core 샌드위치 보의 3점 굴곡 실험 결과와 잘 일치 하였다. 또한 그러한 파손 하중들은 face층의 비율의 변화와 함께 비교되었다. 파괴 mode들의 교차점으로 결정되어진 최적조건은 강도(strength)와 강성(stiffness)에 대한 샌드위치 빔의 최적 core 밀도의 값이 결정되었다. 추가적으로 강도에 대한 최적조건과 그렇지 못한 샌드위치 보에 대한 face 두께 비율 효과가 하중 길이에 따라 비교되었으며, 강도와 강성이 core/face무게 비율과 항께 검토하였다.

Korean Red Ginseng Improves Vascular Stiffness in Patients with Coronary Artery Disease

  • Chung, Ick-Mo;Lim, Joo-Weon;Pyun, Wook-Bum;Kim, Hye-Young
    • Journal of Ginseng Research
    • /
    • 제34권3호
    • /
    • pp.212-218
    • /
    • 2010
  • Korean red ginseng (KRG) has been shown to enhance endothelium-dependent vasorelaxation in experimental animals; however, little is known about its pharmacological effects on vascular stiffness in patients with coronary artery disease (CAD). This randomized, double-blind, placebo-controlled crossover trial was carried out to determine whether KRG has beneficial effects on arterial stiffness, cardiovascular risk factors such as plasma lipid profiles and blood pressure (BP), and Rho-associated kinase (ROCK) activity. Twenty patients (mean age, 62.5 years) with stable angina pectoris were given KRG (2.7 g/day) and a placebo alternatively for 10 weeks. Blood biochemical analysis and pulse wave velocity (PWV) recording were performed on day 0 and after the completion of each treatment. ROCK activity was assessed based on the level of phospho-$Thr^{853}$ in the myosin-binding subunit of myosin light chain phosphatase, determined by Western blot analysis of peripheral blood mononuclear cells. KRG significantly decreased the systolic BP, brachial ankle PWV, and heart femoral PWV in the patients (all p<0.05), but did not significantly alter the serum lipid profiles, including triglycerides and total, high-density lipoprotein, and low-density lipoprotein cholesterol levels. The ROCK activity tended to decrease (p=0.068) following KRG treatment. The placebo did not significantly alter any of the variables. In conclusion, KRG decreased systolic BP and arterial stiffness, probably via the inhibition of ROCK activity, in patients with CAD, but had a neutral effect on serum lipid profiles. Our data suggest that KRG has a therapeutic effect on CAD.

적층로터의 강성 변경을 위한 적층판 압착력의 영향 (Effect of lamination pressing force for stiffness variation of a laminated rotor)

  • 김영춘;박희주;김경웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.788-792
    • /
    • 2003
  • Rotating machines are widely used in industrial world and especially motor and generator take up much part of it. As for this kind of motor and generator, electrical loss due to eddy current is the very important factor and that is also a primary factor causes heat generation. To solve this kind of problem like the above. insulated laminating silicon steel sheet is used to prevent eddy current effect. Laminated rotor is widely used as rotating shaft of motor and generator. Due to that, electrical loss and heat problem can be solved but designer meets another problem. In general. most of the motor and generator can be normally operated under 3,600 rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed, large scale and high precision in industrial world. The critical speed can be determined from the inertia and stillness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape, lamination material and shape, insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method and design criteria will be presented for motor & generator designer, who can apply the result of numerical analysis with equivalent diameter scheme with ease.

  • PDF