• Title/Summary/Keyword: Stiffness Effect

Search Result 2,349, Processing Time 0.029 seconds

Equivalent Static Analysis of Progressive Collapse Using Equivalent Load for Stiffness (강성등가하중을 이용한 등가정적 연쇄붕괴 해석)

  • Hwang, Young-Chul;Kim, Gye-Joong;Kim, Chee-Kyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.375-380
    • /
    • 2007
  • The goal of this paper is to develop a rational static method which consider efficiently the dynamic effect of the gravity load following sudden removal of element. For this goal this paper introduce the equivalent load for element stiffness which is a preceding research result and will develop equivalent static analysis which will be able to predict the maximum behavior considering dynamic effect. Some examples are provided to verify it. Equivalent static analysis is compared with the analysis method which is recommended by the GSA2003 guidelines and the time-history analysis which is the most accurate for dynamic behavior.

  • PDF

The effect of TiO2 nanoparticles in reduction of environmental pollution in concrete structures

  • Tabatabaei, Javad;Gorji, Leila
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.127-129
    • /
    • 2019
  • Heterogeneous photocatalysis is developed rapidly in the field of engineering of environmental. It has a good potential to tackle with the enhancing traffic pollution. Adding photocatalyst to usual building materials such as cement and concrete makes friendly environmental materials against the air pollution. TiO2 nanoparticles are a good item for concrete structures for diminishing the air polluting affect by gasses of exhaust. In specific, the transformation of NOx to NO3- is studied and the interaction of TiO2 nanoparticles and concrete is investigated here by experimental test. This paper presents an overview of the principle of photocatalysis and the application in combination with cement, as well as the results of the laboratory research, especially towards air purifying action. In addition, by the analytical models, the influence of TiO2 nanoparticles is studied on the stiffness of the concrete. The Results show that TiO2 nanoparticles have significant effect on the reduction of environmental pollution and increase of stiffness in the concrete structures.

The Immediate Effect of Maitland Cervical Spine Mobilization on Tone and Stiffness of Upper Limb Muscles in Chronic Stroke Patients (메이틀랜드 목뼈 가동술이 만성 뇌졸중 환자의 팔 긴장도 및 뻣뻣함에 미치는 즉각적인 영향)

  • Park, Shin-jun
    • Physical Therapy Korea
    • /
    • v.25 no.2
    • /
    • pp.13-21
    • /
    • 2018
  • Background: After a stroke, the patient may have abnormal muscle tone due to abnormal alignment. Physical therapists have used stretching, neural mobilization other methods to treat patients after stroke. In addition, joint mobilization is also used to stimulation in pathway of cervical segmental region and to normal cervical spine alignment. Objects: The purpose of this study was to determine whether Maitland cervical spine mobilization has an immediate effect on muscle tone and stiffness of upper extremity. Methods: Thirty subjects were divided into a experimental group ($n_1=10$), a placebo group ($n_2=10$), and a control group ($n_3=10$). The Maitland cervical spine mobilization was applied in the supine position. Immediately after the intervention, muscle tone and stiffness of biceps brachii, brachioradialis, deltoid, and pectoralis major were measured using Myoton(R)PRO. In the placebo group, sham mobilization was applied to the fifth and sixth cervical vertebra, and the control group was instructed to control breathing. Results: In the experimental group, significant differences were found in muscle tone and stiffness of biceps brachii and brachioradialis in comparison with the affected side and the non-affected side before the intervention (p<.05), whereas there was no significant difference after the intervention (p>.05). Muscle tone of biceps brachii on the non-affected side and pectoralis major on the affected side was significantly decreased before and after the intervention (p<.05). The placebo and control group showed no changes on the non-affected and affected side, and no significant differences were detected before and after the intervention. All the groups revealed no significant differences in muscle tone and stiffness of upper extremity before and after the intervention. Conclusion: This study suggests that the application of Maitland cervical spine mobilization enhanced muscle tone of upper extremity on the involved side symmetrically, and influenced a decrease in muscle tone.

Effect of Exercise with Functional Electrical Stimulation and Transcutaneous Electrical Nerve Stimulation on Muscle Tone, Stiffness of Calf Muscle, and Balance Ability in Patients with Stroke (치료적 운동에 기능적 전기자극과 경피신경전기자극 결합이 뇌졸중 환자의 근긴장도 및 뻣뻣함, 균형능력에 미치는 영향)

  • Park, Shin-Jun;Cho, Kyun-Hee;Cho, Yong-Hun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • PURPOSE: This study aimed to compare the impact of exercise with that of functional electrical stimulation (FES) and transcutaneous electrical nerve stimulation (TENS) on muscle tone, calf muscle stiffness, and balance ability in patients with stroke. METHODS: Thirty patients with stroke were randomly divided into an FES group (n=15) and a TENS group (n=15), and a progressive task-oriented exercise was assigned to them. These exercises were performed non-synchronously from December 5, 2016 to January 31, 2017. Patients underwent TENS and simultaneously exercised for 30 minutes daily, 5 times a week for 4 weeks. To determine the effect of the interventions, muscle tone and stiffness of the medial and lateral region of gastrocnemius muscle were measured using the MyotonPRO instrument and balance was assessed using the Berg Balance Scale. RESULTS: Both groups revealed a significant decrease in muscle tone and stiffness of the medial part of gastrocnemius muscle before and after the interventions (p<.05). Berg Balance Scale scores increased significantly (p<.05). However, none of the other parameters were significantly different (p>.05). CONCLUSION: Our results prove that progressive task-oriented exercise along with FES and TENS decreases muscle tone and stiffness of the gastrocnemius muscle in patients with stroke and improves balance. TENS could serve as a complementary replacement for functional electrical stimulation for in-house training, as TENS poses less risk of muscle fatigue and has lesser contraindications than does functional electrical stimulation.

Effects of Combined Postural Correction Exercises on Selected Muscle Activity and Stiffness in Children With Cerebral Spastic Diplegia: Case Study (융합적 자세교정치료가 뇌성경직양측마비 아동의 선택된 근육 활성도와 강직도에 미치는 영향: 사례연구)

  • Shim, Jae-Hun;Kang, Min-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.91-99
    • /
    • 2018
  • The aim of this study was to investigate the short-term effects of combined postural correction exercises (CPCE) on muscle stiffness and muscle activity in children with cerebral spastic diplegia(CSD). The subjects were 3 children (2 male and 1 female) with CSD from 4 to 7 years old. The measurement sites were upper trapezius muscle(UT), rectus abdominis muscle(RA), and gluteus maximus muscle(Gmax), muscle stiffness and muscle activity were measured using Myoton and surface EMG, and the symmetry of both sides was also examined. As a result, children with severe compensatory action showed decreased muscle stiffness and muscle activity in UT and RA and increase in Gmax after CPCE intervention. Especially, the left and right symmetry of the muscles was decreased. In this study, despite some limitations, CPCE have shown a positive effect in posture correction of children with CSD.

Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics

  • Chen, Lin;Sun, Limin;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.627-643
    • /
    • 2015
  • Negative stiffness, previously emulated by active or semi-active control for cable vibration mitigation, is realized passively using a self-contained highly compressed spring, the negative stiffness device (NSD).The NSD installed in parallel with a viscous damper (VD) in the vicinity of cable anchorage, enables increment of damper deformation during cable vibrations and hence increases the attainable cable damping. Considering the small cable displacement at the damper location, even with the weakening device, the force provided by the NSD-VD assembly is approximately linear. Complex frequency analysis has thus been conducted to evaluate the damping effect of the assembly on the cable; the displacement-dependent negative stiffness is further accounted by numerical analysis, validating the accuracy of the linear approximation for practical ranges of cable and NSD configurations. The NSD is confirmed to be a practical and cost-effective solution to improve the modal damping of a cable provided by an external damper, especially for super-long cables where the damper location is particularly limited. Moreover, mathematically, a linear negative stiffness and viscous damping assembly has proven capability to represent active or semi-active control for simplified cable vibration analysis as reported in the literature, while in these studies only the assembly located near cable anchorage has been addressed. It is of considerable interest to understand the general characteristics of a cable with the assembly relieving the location restriction, since it is quite practical to have an active controller installed at arbitrary location along the cable span such as by hanging an active tuned mass damper. In this paper the cable frequency variations and damping evolutions with respect to the arbitrary assembly location are then evaluated and compared to those of a taut cable with a viscous damper at arbitrary location, and novel frequency shifts are observed. The characterized complex frequencies presented in this paper can be used for preliminary damping effect evaluation of an adaptive passive or semi-active or active device for cable vibration control.

Three dimensional analysis of reinforced concrete frames considering the cracking effect and geometric nonlinearity

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.163-180
    • /
    • 2009
  • In the design of tall reinforced concrete (R/C) buildings, the serviceability stiffness criteria in terms of maximum lateral displacement and inter-story drift must be satisfied to prevent large second-order P-delta effects. To accurately assess the lateral deflection and stiffness of tall R/C structures, cracked members in these structures need to be identified and their effective member flexural stiffness determined. In addition, the implementation of the geometric nonlinearity in the analysis can be significant for an accurate prediction of lateral deflection of the structure, particularly in the case of tall R/C building under lateral loading. It can therefore be important to consider the cracking effect together with the geometric nonlinearity in the analysis in order to obtain more accurate results. In the present study, a computer program based on the iterative procedure has been developed for the three dimensional analysis of reinforced concrete frames with cracked beam and column elements. Probability-based effective stiffness model is used for the effective flexural stiffness of a cracked member. In the analysis, the geometric nonlinearity due to the interaction of axial force and bending moment and the displacements of joints are also taken into account. The analytical procedure has been demonstrated through the application of R/C frame examples in which its accuracy and efficiency in comparison with experimental and other analytical results are verified. The effectiveness of the analytical procedure is also illustrated through a practical four story R/C frame example. The iterative procedure provides equally good and consistent prediction of lateral deflection and effective flexural member stiffness. The proposed analytical procedure is efficient from the viewpoints of computational effort and convergence rate.

Seismic evaluation of vertically irregular building frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities

  • Nezhad, Moosa Ebrahimi;Poursha, Mehdi
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.353-373
    • /
    • 2015
  • In this paper, the effects of different types of irregularity along the height on the seismic responses of moment resisting frames are investigated using nonlinear dynamic analysis. Furthermore, the applicability of consecutive modal pushover (CMP) procedure for computing the seismic demands of vertically irregular frames is studied and the advantages and limitations of the procedure are elaborated. For this purpose, a special moment resisting steel frame of 10-storey height was selected as reference regular frame for which the effect of higher modes is important. Forty vertically irregular frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities are created by applying two modification factors (MF=2 and 4) in four different locations along the height of the reference frame. Seismic demands of irregular frames are computed by using the nonlinear response history analysis (NL-RHA) and CMP procedure. Modal pushover analysis (MPA) method is also carried out for the sake of comparison. The effect of different types of irregularity along the height on the seismic demands of vertically irregular frames is investigated by studying the results obtained from the NL-RHA. To demonstrate the accuracy of the enhanced pushover analysis methods, the results derived from the CMP and MPA are compared with those obtained by benchmark solution, i.e., NL-RHA. The results show that the CMP and MPA methods can accurately compute the seismic demands of vertically irregular buildings. The methods may be, however, less accurate especially in estimating plastic hinge rotations for weak or weak-and-soft top and middle storeys of vertically irregular frames.

Effect of silicone rubber-sleeve mounted on shear studs on shear stiffness of steel-concrete composite structures

  • Yang, Chang;Yang, Decan;Huang, Caiping;Huang, Zhixiang;Ouyang, Lizhi;Onyebueke, Landon;Li, Lin
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.741-752
    • /
    • 2022
  • Earlier works have shown that excessive shear stiffness at the steel-concrete interface causes a non-uniform distribution of shear force in composite structures. When the shear studs are wrapped at the fixed end with flexible materials with a low elastic modulus, the shear stiffness at the interface is reduced. The objective of this study was to investigate the effect of silicone rubber-sleeve mounted on shear studs on the shear stiffness of steel-concrete composite structures. Eighteen push-out tests were conducted to investigate the mechanical behavior of silicone rubber-sleeved shear stud groups (SRS-SSG). The dimension and arrangement of silicon rubber-sleeves (SRS) were taken into consideration. Test results showed that the shear strength of SRS-SSG was higher than that of a shear stud group (SSG), without SRS. For SRS-SSG with SRS heights of 50 mm, 100 mm, 150 mm, the shear strengths were improved by 13%, 20% and 9%, respectively, compared to the SSG alone. The shear strengths of SRS-SSG with the SRS thickness of 2 mm and 4 mm were almost the same. The shear stiffness of the SRS-SSG specimens with SRS heights of 50 mm, 100 mm and 150 mm were 77%, 67% and 66% of the SSG specimens, respectively. Test results of specimens SSG-1 and predicted values based on the three design specifications were compared. The nominal single stud shear strength of SSG-1 specimens was closest to that calculated by the Chinese Code for Design of Steel Structures (GB50017-2017). An equation is proposed to consider the effects of SRS for GB50017-2017, and the predicted values based on the proposed equation agree well with the tested results of SRS-SSG.

Reinforcing Effect of Thin-wall at Serviceability Condition (상시하중상태에서 박벽의 보강효과에 대한 연구)

  • Kim, Doo-Hwan;Yoon, Seong-Soo;Park, Jin-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.11-17
    • /
    • 2010
  • For the reasonable analysis of design problems for agricultural facilities, considered the reinforcing effect of thin-wall. The most of agricultural structure is constructed small scale and have many purposes. Thus it has been designed temporary rather than permanent structure, and has relatively large slenderness ratio, small section and semi-rigid condition. Therefore many agricultural facilities are consist of relatively strong frame with weak wall at the viewpoint of stiffness and have not been reflected in the design. But the tension field influences to collapse of structure have already known. Therefore, we need quantification the effect of tension field at structural analysis. In this study, present the method of quantification the effect of tension field that came out thin-plate surrounded by high stiffness frame. The numerical results show that the effect of tension field effect for thin-wall is about 5% of the sectional area of frame in study agricultural facilities.