• Title/Summary/Keyword: Stiffness Distribution Ratio

Search Result 143, Processing Time 0.017 seconds

Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory

  • Belmahi, Samir;Zidour, Mohammed;Meradjah, Mustapha
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • This present article represents the study of the forced vibration of nanobeam of a single-walled carbon nanotube (SWCNTs) surrounded by a polymer matrix. The modeling was done according to the Euler-Bernoulli beam model and with the application of the non-local continuum or elasticity theory. Particulars cases of the local elasticity theory have also been studied for comparison. This model takes into account the different effects of the interaction of the Winkler's type elastic medium with the nanobeam of carbon nanotubes. Then, a study of the influence of the amplitude distribution and the frequency was made by variation of some parameters such as (scale effect ($e_0{^a}$), the dimensional ratio or aspect ratio (L/d), also, bound to the mode number (N) and the effect of the stiffness of elastic medium ($K_w$). The results obtained indicate the dependence of the variation of the amplitude and the frequency with the different parameters of the model, besides they prove the local effect of the stresses.

The Changes of the Shape and Particle Size Distribution of δ' Phase on Ageing in Al-Li-( Cu, Zr) Alloys (Al-Li-( Cu, Zr) 합금에서 시효에 따른 δ' 상의 형상 및 입자크기분포의 변화)

  • Woo, K.D.;Cho, H.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.2
    • /
    • pp.96-102
    • /
    • 1994
  • The present work was aimed to examine the changes of the shape and particle size distribution(PSD) of ${\delta}^{\prime}$ particles on ageing in Al-Li-(Cu, Zr) alloys which had low density, high specific strength and stiffness, Increasing ageing time and temperature resulted in particles whose aspect ratio tended toward 1. The aspect ratio of ${\delta}^{\prime}$ particles was not dependent upon the ageing temperature and time in Al-Li-Cu alloy but was dependent upon them in Al-Li-Zr alloy. The PSD of ${\delta}^{\prime}$ particles in Al-Li-Zr alloy skewed to the right hand compared with that in Al-Li-Cu alloy, because $Al_3Zr$ phase in Al-Li-Zr alloy formed before ageing promoted the precipitation and growth of ${\delta}^{\prime}$ phase. Therefore, the PSD of the ${\delta}^{\prime}$ particles was found to be affected by the presence of $Al_3Zr$ particles. The growth rate of ${\delta}^{\prime}$ phase was not affected by the existence of the third transition phase $T_1$ formed by the addition of Cu in Al-Li alloy but was affected by the existence of $Al_3Zr$ formed by the addition of Zr in Al-Li alloy.

  • PDF

Optimal design of seismic reinforcement for structures with asymmetric rigidity plans using genetic algorithm (유전자 알고리즘을 이용한 비대칭 강성 구조물의 내진보강 최적설계)

  • Lee, Joon-Ho;Kim, Yu-Seong;Sung, Eun-Hee
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.65-73
    • /
    • 2024
  • In this study, we propose an optimal design method by applying the Prefabricated Buckling Restrained Brace (PF-BRB) to structures with asymmetrically rigidity plan. As a result of the PF-BRB optimal design of a structure with an asymmetrically rigidity plan, it can be seen that the reduction effect of dynamic response is greater in the case of arrangement considering the asymmetric distribution of stiffness (Asym) than in the case of arrangement in the form of a symmetric distribution (Sym), especially It was confirmed that at an eccentricity rate of 20%, the total amount of reinforced PF-BRBs was also small. As a result of analyzing the dynamic response characteristics according to the change in eccentricity of the asymmetrically rigidity plan, the distribution of the reinforced PF-BRB showed that the larger the eccentricity, the greater the amount of damper distribution around the eccentric position. Additionally, when comparing the analysis models with an eccentricity rate of 20% and an eccentricity rate of 12%, the response reduction ratio of the 20% eccentricity rate was found to be large.

Experimental compressive behavior of novel composite wall with different width-to-thickness ratios

  • Qin, Ying;Chen, Xin;Zhu, Xing-Yu;Xi, Wang;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.187-196
    • /
    • 2020
  • Double skin composite wall system owns several structural merits in terms of high load-carrying capacity, large axial stiffness, and favorable ductility. A recently proposed form of truss connector was used to bond the steel plates to the concrete core to achieve good composite action. The structural behavior of rectangular high walls under compression and T-shaped high walls under eccentric compression has been investigated by the authors. Furthermore, the influences of the truss spacings, the wall width, and the faceplate thickness have been previously studied by the authors on short walls under uniform compression. This paper experimentally investigated the effect of width-to-thickness ratio on the compressive behavior of short walls. Compressive tests were conducted on three short specimens with different width-to-thickness ratios. Based on the test results, it is found that the composite wall shows high compressive resistance and good ductility. The walls fail by local buckling of steel plates and crushing of concrete core. It is also observed that width-to-thickness ratio has great influence on the compressive resistance, initial stiffness, and strain distribution across the section. Finally, the test results are compared with the predictions by modern codes.

Free vibrations of a two-cable network inter-supported by cross-links extended to ground

  • Zhou, H.J.;Wu, Y.H.;Li, L.X.;Sun, L.M.;Xing, F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.653-667
    • /
    • 2019
  • Using cross-ties to connect cables together when forming a cable network is regarded as an efficient method of mitigating cable vibrations. Cross-ties have been extended and fixed on bridge decks or towers in some engineering applications. However, the dynamics of this kind of system need to be further studied, and the effects of extending cross-links to bridge decks/towers on the modal response of the system should be assessed in detail. In this paper, a system of two cables connected by an inter-supported cross-link with another lower cross-link extended to the ground is proposed and analyzed. The characteristic equation of the system is derived, and some limiting solutions in closed form of the system are derived. Roots of cable system with special configurations are also discussed, attention being given to the case when the two cables are identical. A predictable mode behavior was found when the stiffness of inter-connection cross-link and the cross-link extended to the ground were the same. The vector of mode energy distribution and the degree of mode localization index are proposed so as to distinguish global and local modes. The change of mode behaviors is further discussed in the case when the two cables are not identical. Effects of cross-link stiffness, cross-link location, mass-tension ratio, cable length ratio and frequency ratio on $1^{st}$ mode frequency and mode shape are addressed.

An Estimate of Flexural Strength for Reinforce Concrete Beams Strengthened with CFRP Sheets (탄소섬유쉬트에 의해 휨보강된 RC보의 휨강도 추정)

  • Park Jong-Sup;Jung Woo-Tai;You Young-Jun;Park Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.213-220
    • /
    • 2005
  • Carbon fiber reinforced polymer (CFRP) sheets are becoming increasingly popular for strengthening deteriorated concrete bridges due to their excellent strength and stiffness-to-weight ratio, corrosion resistance, and convenience of construction work. The purpose of this study is to compare the performance of CFRP-strengthened reinforced concrete (RC) beams and to develop a new design formula. Simple beams with 3 m span length were tested to investigate the effect of reinforcing steel ratio and CFRP-reinforcing ratio on the flexural behavior of strengthened RC beams. The test results were analyzed with the special emphasis on the failure mode, the maximum load, and the strain distribution in the section. It is shown that the strain of the strengthened beams is not linearly distributed in the section. A new design formula based on the non-linear distribution of the strain has been derived and showed that it has a good agreement with the various domestic and foreign test results.

Numerical analysis of segmental tunnel linings - Use of the beam-spring and solid-interface methods

  • Rashiddel, Alireza;Hajihassani, Mohsen;Kharghani, Mehdi;Valizadeh, Hadi;Rahmannejad, Reza;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.471-486
    • /
    • 2022
  • The effect of segmental joints is one of main importance for the segmental lining design when tunnels are excavated by a mechanized process. In this paper, segmental tunnel linings are analyzed by two numerical methods, namely the Beam-Spring Method (BSM) and the Solid-Interface Method (SIM). For this purpose, the Tehran Subway Line 6 Tunnel is considered to be the reference case. Comprehensive 2D numerical simulations are performed considering the soil's calibrated plastic hardening model (PH). Also, an advanced 3D numerical model was used to obtain the stress relaxation value. The SIM numerical model is conducted to calculate the average rotational stiffness of the longitudinal joints considering the joints bending moment distribution and joints openings. Then, based on the BSM, a sensitivity analysis was performed to investigate the influence of the ground rigidity, depth to diameter ratios, slippage between the segment and ground, segment thickness, number of segments and pattern of joints. The findings indicate that when the longitudinal joints are flexible, the soil-segment interaction effect is significant. The joint rotational stiffness effect becomes remarkable with increasing the segment thickness, segment number, and tunnel depth. The pattern of longitudinal joints, in addition to the joint stiffness ratio and number of segments, also depends on the placement of longitudinal joints of the key segment in the tunnel crown (similar to patterns B and B').

Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.431-454
    • /
    • 2016
  • In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam model reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) with initial geometrical imperfection under uniformly distributed load using finite element method (FEM) is investigated. The governing equations of equilibrium are derived by the Hamilton's principle and von Karman type nonlinear strain-displacement relationships are employed. Also the influences of various loadings, amplitude of the waviness, UD, USFG, and SFG distributions of carbon nanotube (CNT) and different boundary conditions on the dimensionless transverse displacements and nonlinear frequency ratio are presented. It is seen that with increasing load, the displacement of USFG beam under force loads is more than for the other states. Moreover it can be seen that the nonlinear to linear natural frequency ratio decreases with increasing aspect ratio (h/L) for UD, USFG and SFG beam. Also, it is shown that at the specified value of (h/L), the natural frequency ratio increases with the increasing the values amplitude of waviness while the dimensionless nonlinear to linear maximum deflection decreases. Moreover, with considering the amplitude of waviness, the stiffness of Euler-Bernoulli beam model reinforced by FG-CNT increases. It is concluded that the R parameter increases with increasing of volume fraction while the rate of this parameter decreases. Thus one can be obtained the optimum value of FG-CNT volume fraction to prevent from resonance phenomenon.

Arch-to-beam rigidity analysis for V-shaped rigid frame composite arch bridges

  • Gou, Hongye;Pu, Qianhui;Zhou, Yang;Hong, Yu
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.405-416
    • /
    • 2015
  • We proposed the concept of nominal rigidity of a long-span V-shaped rigid frame composite arch bridge, analyzed the effects of structural parameters on nominal rigidity, and derived a theoretical nominal rigidity equation. In addition, we discussed the selection of the arch-to-beam rigidity ratio and its effect on the distribution of internal forces, and analyzed the influence of the ratio on the internal forces. We determined the delimitation value between rigid arch-flexible beam and flexible arch-rigid beam. We summarized the nominal rigidity and arch to beam rigidity ratios of existing bridges. The results show that (1) rigid arch-flexible beam and flexible arch-rigid beam can be defined by the arch-to-beam rigidity ratio; (2) nominal rigidities have no obvious differences among the continuous rigid frame composite arch bridge, V-shaped rigid frame bridge, and arch bridge, which shows that nominal rigidity can reflect the global stiffness of a structure.

Identifying torsional eccentricity in buildings without performing detailed structural analysis

  • Tamizharasi, G.;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.283-295
    • /
    • 2022
  • Seismic design codes permit the use of Equivalent Static Analysis of buildings considering torsional eccentricity e with dynamic amplification factors on structural eccentricity and some accidental eccentricity. Estimation of e in buildings is not addressed in codes. This paper presents a simple approximate method to estimate e in RC Moment Frame and RC Structural Wall buildings, which required no detailed structural analysis. The method is validated by 3D analysis (using commercial structural analysis software) of a spectrum of building. Results show that dynamic amplification factor should be applied on torsional eccentricity when performing Response Spectrum Analysis also. Also, irregular or mixed modes of oscillation arise in torsionally unsymmetrical buildings owing to poor geometric distribution of mass and stiffness in plan, which is captured by the mass participation ratio. These irregular modes can be avoided in buildings of any plan geometry by limiting the two critical parameters (normalised torsional eccentricity e/B and Natural Period Ratio 𝜏 =T𝜃/T, where B is building lateral dimension, T𝜃 uncoupled torsional natural period and T uncoupled translational natural period). Suggestions are made for new building code provisions.