• Title/Summary/Keyword: Stiffness Coefficients.

Search Result 378, Processing Time 0.029 seconds

Prediction of the Natural Frequency of a Soil-Pile-Structure System during an earthquake (지진하중을 받는 말뚝 시스템의 고유 진동수 예측)

  • Yang, Eui-Kyu;Kwon, Seon-Yong;Choi, Jung-In;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.976-984
    • /
    • 2009
  • This study proposes a simple method that uses a simple mass-spring model to predict the natural frequency of a soil-pile-structure system in sandy soil. This model includes a pair of matrixes, i.e., a mass matrix and a stiffness matrix. The mass matrix is comprised of the masses of the pile and superstructure, and the stiffness matrix is comprised of the stiffness of the pile and the spring coefficients between the pile and soil. The key issue in the evaluation of the natural frequency of a soil-pile system is the determination of the spring coefficient between the pile and soil. To determine the reasonable spring coefficient, subgrade reaction modulus, nonlinear p-y curves and elastic modulus of the soil were utilized. The location of the spring was also varied with consideration of the infinite depth of the pile. The natural frequencies calculated by using the mass-spring model were compared with those obtained from 1-g shaking table model pile tests. The comparison showed that the calculated natural frequencies match well with the results of the 1-g shaking table tests within the range of computational error when the three springs, whose coefficients were calculated using Reese's(1974) subgrade reaction modulus and Yang's (2009) dynamic p-y backbone curves, were located above the infinite depth of the pile.

  • PDF

Dynamic experimental study on single and double beam-column joints in steel traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie;Yang, Kun;Wu, Zhanjing
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.617-628
    • /
    • 2017
  • In order to study the failure mode and seismic behavior of the interior-joint in steel traditional-style buildings, a single beam-column joint and a double beam-column joint were produced according to the relevant building criterion of ancient architectural buildings and the engineering instances, and the dynamic horizontal loading test was conducted by controlling the displacement of the column top and the peak acceleration of the actuator. The failure process of the specimens was observed, the bearing capacity, ductility, energy dissipation capacity, strength and stiffness degradation of the specimens were analyzed by the load-displacement hysteresis curve and backbone curve. The results show that the beam end plastic hinge area deformed obviously during the loading process, and tearing fracture of the base metal at top and bottom flange of beam occurred. The hysteresis curves of the specimens are both spindle-shaped and plump. The ultimate loads of the single beam-column joint and double beam-column joint are 48.65 kN and 70.60 kN respectively, and the equivalent viscous damping coefficients are more than 0.2 when destroyed, which shows the two specimens have great energy dissipation capacity. In addition, the stiffness, bearing capacity and energy dissipation capacity of the double beam-column joint are significantly better than that of the single beam-column joint. The ductility coefficients of the single beam-column joint and double beam-column joint are 1.81 and 1.92, respectively. The cracks grow fast when subjected to dynamic loading, and the strength and stiffness degradation is also degenerated quickly.

Seismic behavior of thin cold-formed steel plate shear walls with different perforation patterns

  • Monsef Ahmadi, H.;Sheidaii, M.R.;Tariverdilo, S.;Formisano, A.;De Matteis, G.
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.377-388
    • /
    • 2021
  • Thin perforated Steel Plate Shear Walls (SPSWs) are among the most common types of seismic energy dissipation systems to protect the main boundary components of SPSWs from fatal fractures in the high-risk zones. In this paper, the cyclic behavior of the different circular hole patterns under cyclic loading is reported. Based on the experimental results, it can be concluded that a change in the perforation pattern of the circular holes leads to a change in the locations of the fracture tendency over the web plate, especially at the plate-frame interactions. Accordingly, the cyclic responses of the tested specimens were simulated by finite element method using the ABAQUS package. Likewise, perforated shear panels with a new perforation pattern obtained by implementing Topology Optimization (TO) were proposed. It was found that the ultimate shear strength of the specimen with the proposed TO perforation pattern was higher than that of the other specimens. In addition, theoretical equations using the Plate-Frame Interaction (PFI) method were used to predict the shear strength and initial stiffness of the considered specimens. The theoretical results showed that the proposed reduced coefficients relationships cannot accurately predict the shear strength and initial stiffness of the considered perforated shear panels. Therefore, the reduced coefficients should be adopted in the theoretical equations based on the obtained experimental and numerical results. Finally, with the results of this study, the shear strength and initial stiffness of these types of perforated shear panels can be predicted by PFI method.

Performance Predictions of Gas Foil Journal Bearings with Turbulent Flows (난류 유동을 갖는 가스 포일 저널 베어링의 성능 예측)

  • Mun, Jin Hyeok;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.190-198
    • /
    • 2019
  • Gas foil bearings (GFBs) enable small- to medium-sized turbomachinery to operate at ultra-high speeds in a compact design by using ambient air or process gas as a lubricant. When using air or process gas, which have lower viscosity than lubricant oil, the turbomachinery has the advantage of reduced power loss from bearing friction drag. However, GFBs may have high Reynolds number, which causes turbulent flows due to process gas with low viscosity and high density. This paper analyzes gas foil journal bearings (GFJBs) with high Reynolds numbers and studies the effects of turbulent flows on the static and dynamic performance of bearings. For comparison purposes, air and R-134a gas lubricants are applied to the GFJBs. For the air lubricant, turbulence is dominant only at rotor speeds higher than 200 krpm. At those speeds, the journal eccentricity decreases, but the film thickness, power loss, and direct stiffness and damping coefficients increase. On the other hand, the R-134a gas lubricant, which that has much higher density than air, causes dominant turbulence at rotor speeds greater than 10 krpm. The turbulent flow model predicts decreased journal eccentricity but increased film thickness and power loss when compared with the lamina flow model predictions. The vertical direct stiffness and damping coefficients are lower at speeds below 100 krpm, but higher beyond that speeds for the turbulent model. The present results indicate that turbulent flow effects should be considered for accurate performance predictions of GFJBs with high Reynolds number.

Design formulas for vibration control of sagged cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie F. Jr.;Ko, Jan-Ming;Dong, Shenghao
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.537-551
    • /
    • 2019
  • In this paper, a method for analyzing the damping performance of stay cables incorporating magnetorheological (MR) dampers in the passive control mode is developed taking into account the cable sag and inclination, the damper coefficient, stiffness and mass, and the stiffness of damper support. Both numerical and asymptotic solutions are obtained from complex modal analysis. With the asymptotic solution, analytical formulas that evaluate the equivalent damping ratio of the sagged cable-damper system in consideration of all the above parameters are derived. The main thrust of the present study is to develop an general design formula and a universal curve for the optimal design of MR dampers for adjustable passive control of sagged cables. Two sag-affecting coefficients are derived to reflect the effects of cable sag on the maximum attainable damping ratio and the optimal damper coefficient. For the cable configurations commonly used in cable-stayed bridges, the sag-affecting coefficients are directly expressed in terms of the sag-extensibility parameter to facilitate the control design. A case study on adjustable passive vibration control of the longest cable (536 m) on Stonecutters Bridge is carried out to demonstrate the influence of the sag for the damper design, and to figure out the necessity of adjustability of damper coefficients for achieving maximum damping ratio for different vibration modes.

A suggestion of Aortic wall Stiffness Evaluation Technique Independent on Changeable Blood Pressure : Aortic Distensibility Index (변화하는 혈압의 영향을 받지 않는 동맥 벽의 강화도 측정 방법 제안 : 대동맥 확장지수)

  • Seo, Jee-Hye;Choi, Dong-Ho;Wu, Zhuqing;Rienmueller, Rainer;Lee, Jong-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.151-158
    • /
    • 2008
  • To evaluate aortic wall stiffness without influence of different background blood pressure, a new technique was developed and verified. At eight swine descending aortae, volume-pressure measurement was performed using custom-made system. Based on averaged pressure-volume curve, aortic distensibility index was formulated to evaluate aortic wall stiffness regardless of variable blood pressure and aortic size. The variability of aortic distensibility index by pressure change was compared with other parameters for wall stiffness evaluation. Subsequently, the aortic distensibility index was calculated at 100 contrast-enhanced EBCT data sets of normal volunteers in regular health screening program. The measured aortic distensibility index was compared with age, coronary calcium score, and aortic calcium score. Between 50 and 360 mmHg of blood pressure, the coefficient of variance of aortic distensibility index was 22.00% as comparing with 88.99% of classical compliance. Based on age, aortic distensibility index showed correlation coefficient of 0.55, whereas classical compliance showed 0.26. The correlation coefficient with modified aortic calcification was 0.43. Linear regression study revealed statistical significance of correlation coefficients. The aortic distensibility index, the method to evaluate aortic wall stiffness free from variable blood pressure and aortic size, was developed and verified with significant practical feasibility.

Analysis of Arterial Stiffness Variation by Photoplethysmographic DC Component (광용적맥파 비맥동성분에 의한 혈관경직도 변화 분석)

  • Lee, Chung-Keun;Shin, Hang-Sik;Kong, In-Deok;Lee, Myoun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.109-117
    • /
    • 2011
  • Assuming that photons absorbed by a vessel do not have acute variations, DC component reflect the basal blood volume (or diameter) before blood pulsation. Vascular stiffness and reflection is influenced by changes in basal blood volume (or diameter). This paper describes analysis of the characteristic variations of vascular stiffness, according to relative variations in DC components of the PPG signal (25-75%). For quantitative analysis, we have used parameters that were proposed previously, reflection and stiffness index, and the second derivative of PPG waveform, b/a and d/a. Significantly, the vascular stiffness and reflections were increased according to increase in DC component of the PPG signal for more than about 3% of baseline values. The systolic blood pressure were increased from $113.1{\times}13.18$ to $116.2{\times}13.319$ mmHg, about 2.76% (r = 0.991, P < 0.001) and the AC component of the PPG signal were decreased from $2.073{\times}2.287$ to $1.973{\times}2.2038$ arbitrary unit, about 5.09% (r = -0.993, P < 0.001). It is separated by DC median and correlation analysis was performed for analyzing vascular characteristics according to instantaneous DC variations. There are significant differences between two correlation coefficients in separated data.

Roughness Coefficients Evaluation of the Korean Riparian Vegetation (국내 수변 식생의 조도계수 평가)

  • Rhee, Dong Sop;Lee, Du Han;Kim, Myounghwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.345-354
    • /
    • 2012
  • The main objective of this study is evaluating experimentally roughness coefficients of the Korean riparian vegetations based on the n-VR analysis to suggest the practical guideline for Manning's roughness coefficients for the channel design. Hydraulic experiments were conducted for Phragmites japonica Steud., Miscanthus sacchariflorus (Maxim.) Benth., and Phragmites communis Trin. under both submerged and un-submerged conditions, and the n-VR relationships are developed for each grass. Three vegetations tested in this study can be considered as same group showing similar roughness characteristics, though these grasses are strongly affected by vegetation stiffness. Vegetation roughness are also affected by the growth state of plants according to experimental results of Phragmites communis Trin.

Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM

  • Polatov, Askhad M.;Khaldjigitov, Abduvali A.;Ikramov, Akhmat M.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.305-321
    • /
    • 2020
  • In this paper is presented the solution method for three-dimensional problem of transversely isotropic body's elastoplastic deformation by the finite element method (FEM). The process of problem solution consists of: determining the effective parameters of a transversely isotropic medium; construction of the finite element mesh of the body configuration, including the determination of the local minimum value of the tape width of non-zero coefficients of equation systems by using of front method; constructing of the stiffness matrix coefficients and load vector node components of the equation for an individual finite element's state according to the theory of small elastoplastic deformations for a transversely isotropic medium; the formation of a resolving symmetric-tape system of equations by summing of all state equations coefficients summing of all finite elements; solution of the system of symmetric-tape equations systems by means of the square root method; calculation of the body's elastoplastic stress-strain state by performing the iterative process of the initial stress method. For each problem solution stage, effective computational algorithms have been developed that reduce computational operations number by modifying existing solution methods and taking into account the matrix coefficients structure. As an example it is given, the problem solution of fibrous composite straining in the form of a rectangle with a system of circular holes.

Research on the inlet preswirl effect of clearance flow in canned motor reactor coolant pump

  • Xu, Rui;Song, Yuchen;Gu, Xiyao;Lin, Bin;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2540-2549
    • /
    • 2022
  • For a pressurized water reactor power plant, the reactor coolant pump (RCP) is a kernel component. And for a canned motor RCP, the rotor system's properties determines its safety. The liquid coolant inside the canned motor RCP fills clearance between the metal shields of rotor and stator, forming a lengthy clearance flow. The influence of inlet preswirl on rotordynamic coefficients of clearance flow in canned motor RCP and their effects on the rotordynamic characteristics of the pump are numerically and experimentally investigated in this work. A quasi-steady state computational fluid dynamics (CFD) method has been used to investigate the influence of inlet preswirl. A vertical experiment rig has also been established for this purpose. Rotordynamic coefficients on different inlet preswirl ratios (IR) are obtained through CFD and experiment. Results show that the cross-coupled stiffness of the clearance flow would change significantly with inlet preswirl, but other rotordynamic coefficients would not change significantly with inlet preswirl. For the case of clearance flow between the stator and rotor cans, influence of inlet preswirl is not so significant as the IR is not large enough.