• Title/Summary/Keyword: Stiffener

Search Result 434, Processing Time 0.029 seconds

Load Transfer Mechanism of the Hybrid Beam-Column Connection System with Structural Tees (T 형강을 사용한 합성골조 보-기둥 접합부의 하중전달 메카니즘)

  • 김상식;최광호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.823-829
    • /
    • 2002
  • The composite frame system with reinforced concrete column and steel beam has some advantages in the structural efficiency by complementing the shortcomings between the two systems. The system, however has also a lot of problems in practical design and construction process due to the material dissimilarities. Considering these circumstances, this research is aimed at the development of the composite structural system which enables the steel beams to be connected to the R/C columns with higher structural safety and economy. Basically the proposed connection system is composed of four split tees, structural angles reinforced by stiffener, high strength steel rods, connecting plates and shear plates. The structural tests have been carried out to verify the moment transfer mechanism from beam flange to steel rods or connecting plates through the angle reinforced by siffener. The four prototype specimens have been tested until the flange of beam reached the plastic states. From the tests, no distinct material dissimilarities between concrete and steel have been detected and the stress transfer through wide flange beam - structural angle - high strength steel rod or connecting plate is very favorable.

A Proposal for an Evaluation of Flexural Resistance of Longitudinally Stiffened Plate Girder with Slender Web (수평보강재로 보강된 세장 복부판을 갖는 플레이트 거더의 휨강도 평가 방법의 제안)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Back, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.119-132
    • /
    • 2014
  • In this paper, a series of numerical analyses were performed to evaluate the flexural resistance of steel plate girder with longitudinally stiffened and slender web. The SM490 steel was adopted for the study and the flexural resistances evaluated from the numerical analysis were compared with those suggested by the AASHTO LRFD and the Eurocode 3 codes, respectively. It was found that the AASHTO LRFD code could considerably underestimate the flexural resistance as the web slenderness becomes smaller. This comes from the fact that current AASHTO LRFD code does not consider a possible increase of slenderness limits for compact and noncompct web, and also an additional effect of web restraint on the rotation of compression flange in longitudinally stiffened web. Therefore, the slenderness limits of web and flange have been newly proposed for the plate girders with longitudinally stiffened web and it is analytically verified that the flexural resistance can be appropriately estimated by applying the proposed slenderness limits to the AASHTO LRFD code.

Shear Buckling Strength and Behaviors of Steel Plate Girder with Asymmetrical Shear Resistant Web Panel by Local Corrosion (국부 부식손상에 의하여 비대칭 전단저항 복부단면을 가진 강거더의 전단강도 및 거동평가)

  • Lee, Myoung Jin;Ahn, Jin Hee;Kim, In Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.105-118
    • /
    • 2014
  • The number of the deteriorated bridge has been sharply increased due to the increase in the bridge service period in Korea. Local corrosion problem of structural member can be occurred according to atmospheric corrosion environments based on the installation location of steel bridges. Especially, in case of the plate girder bridge, corrosion damage is concentrated on the web panel and stiffener at girder end. An asymmetrical shear resistant web section in the plate girder bridge can be caused from the local corrosion of the web panel, because local corrosion is not symmetrically occurred to the bridge. In this study, therefore, the shear buckling strength and behavior of a plate girder with asymmetrically corroded web panel was numerically evaluated using FE analysis, which was considering an aspect ratio and corrosion damage level of web panel. The shear buckling strength reduction of an asymmetrical shear resistant web panel was compared and evaluated according to corroded volume ratio for a web panel and for diagonal tension field of a web panel.

Flexural performance evaluation of fiber reinforced segments with GFRP plate (GFRP plate를 적용한 섬유보강세그먼트의 휨성능 평가)

  • Oh, Ri-On;Park, Sung-Ki;Sung, Sang-Kyung;Lee, Jae-Young;Kim, Hwang-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.839-854
    • /
    • 2018
  • This study was performed to evaluate the performance of GFRP plate reinforced segments for TBM tunnel support. Recently, the SFRC segment has been applied to prevent local damage such as reduction of the amount of reinforcing bars of the segment, crack control and breakage. However, the steel fiber used in the SFRC segment has a problem of durability deterioration due to fiber corrosion. Compared with the RC segment, the maximum flexural load reduction of the SFRC segment hinders the broad application range of the TBM tunnel segment. Therefore, GFRP plate was considered as a stiffener for the maximum load increase of SFRC segment, and structural synthetic fiber without corrosive concern was used as a substitute for steel fiber. The flexural performance of the segment was evaluated by using the type of reinforcing fiber and GFRP plate thickness as the main parameters. As a result, the maximum load and the flexural toughness were increased by 21.78~23.03% and 0.5~7.96%, respectively, as compared with the segments reinforced with reinforcing fiber and GFRP plate of 3 mm thickness.

Stiffness evaluation of elastomeric bearings for leg mating unit (LMU용 일래스토머릭 베어링의 강성평가)

  • Han, Dong-Seop;Jang, Si-Hwan;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.106-111
    • /
    • 2017
  • In this study, the stiffness of an LMU (Leg Mating Unit), which is a device required for installing the top side part of an offshore structure, was examined through structural analysis. This unit is mounted on the supporting point of the structure and is used to absorb the shock at installation. It is a cylindrical structure with an empty center. To support the vertical load, elastomeric bearings (EBs) and iron plates are laminated in layers. The stiffness of the EBs is basically influenced by the size of the bearings, but it varies with the number of laminated sheets inside the same sized structure. The relationship between the stiffener and the compressive stiffness is investigated, and its design is suggested. The stiffness of the EBs is analyzed by calculating the reaction force, while controlling the displacement. First, the relationship between the size of the reinforcing plate and the compressive stiffness is considered. Next, the relationship between the number of stacked reinforcing plates and the compression stiffness is considered. Different loads are required for each installed point. The goal is to design the compression stiffness in such a way that the same deformation occurs at each point in the analysis. In this study, ANSYS is used to perform the FE analysis.

An Experimental Study for Reinforcement Effect of Adhesive Stiffeners Depending on the Aspect Ratio of Masonry Wall (조적벽체의 형상비에 따른 접착형 보강재의 보강효과에 관한 실험적 연구)

  • Park, Byung-Tae;Kwon, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.13-20
    • /
    • 2017
  • Unreinforced masonry buildings are vulnerable to lateral forces, such as earthquakes, owing to the nature of the building materials, yet numerous masonry buildings remain in South Korea. Since the majority of the existing masonry buildings were constructed more than 20 years ago, it is necessary to develop economical reinforcement methods for disaster reduction. In this study, external reinforcement of masonry walls using adhesive stiffeners was proposed as a reinforcement method for such age-old masonry buildings. Six specimens were fabricated with different aspect ratios (L/H = 1.0, 1.3, and 2.0) and used in static load tests to verify the reinforcement effect. The experimental results showed that the masonry walls before and after reinforcement were ruptured by rigid body rotation and slip. In addition, the maximum strength, maximum displacement, and dissipated energy of the walls were shown to increase after applying the adhesive stiffeners, thereby verifying the excellent reinforcement effect. Furthermore, an adhesive stiffener design for unreinforced masonry walls was proposed based on the increased shear strength achieved by using conventional glass fibers. The proposed design can be used as a basis for the application of adhesive stiffeners for unreinforced masonry walls.

A Study on the Anchorage Length of Metal Stiffeners for the Structural Reinforcement of Stone Cultural Heritages (석조문화재의 구조적 보강을 위한 금속보강재 정착길이 연구)

  • Kim, Sa-Dug;Lee, Dong-Sik;Kim, Hyun-Yong
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.141-151
    • /
    • 2012
  • It was the 1900s that the damaged materials of stone heritages began to be preserved and managed for the purpose of reuse, especially since cement, an inorganic material, began to be used during the Japanese colonial period. Epoxy resin, an organic material, was introduced to architecture around the turn of the 1990s, and has been being used across the board. In particular, filler mixtures began to be aggressively used for the structural reinforcement of severed materials. The problem was metal stiffeners used for structural reinforcement. The anchorage length varied depending in different conservation scientists, and as a result the secondary damage was apt to occur in the materials. In this study, hereat, a calculation was made of the most effective anchorage length with the minimization of material damage. The results were as in the following: the anchorage length of an 8-milimeter-across (ø8) metal stiffener was found to be most effective at 60.88mm. Those of ø12 and ø16 were 60.88mm and 91.32mm respectively. In the case of other calibers, the anchorage length was calculated by a formula ${\ell}_d=a_tf_y/u{\Sigma}_0$. In the experiment, helically-threaded round bars were used as metal stiffeners in order that they could bear surcharge loads such as bending, shear and constriction.

Low-speed Impact Localization on a Stiffened Composite Structure Using Reference Data Method (기준신호 데이터를 이용한 보강된 복합재 구조물에서의 저속 충격위치 탐색)

  • Kim, Yoon-Young;Kim, Jin-Hyuk;Park, Yurim;Shrestha, Pratik;Kwon, Hee-Jung;Kim, Chun-Gon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Low-speed impact was localized on a stiffened composite structure, using 4 FBG sensors with 100 kHz-sampling rate interrogator and devised localization algorithm. The composite specimen consists of a main spar and several stringers, and the overall size of the specimen's surface is about $0.8{\times}1.2m$. Pre-stored reference data for 247 grid locations and 36 stiffener locations are gathered and used as comparison target for a random impact signal. The proposed algorithm uses the normalized cross-correlation method to compare the similarities of the two signals; the correlation results for each sensor's signal are multiplied by others, enabling mutual compensation. 20 verification points were successfully localized with a maximum error of 43.4 mm and an average error of 17.0 mm. For the same experimental setup, the performance of the proposed method is evaluated by reducing the number of sensors. It is revealed that the mutual compensation between the sensors is most effective in the case of a two sensor combination. For the sensor combination of FBG #1 and #2, the maximum localization error was 42.5 mm, with average error of 17.4 mm.

FE Analysis on the Strength Safety of a Full Containment LNG Storage Tank with Tension Steel Cables (인장강선을 사용한 완전방호식 LNG 저장탱크의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.18-24
    • /
    • 2008
  • This paper presents the stress and deformation behaviors of 9% nickel steel inner tank in a full containment LNG storage tank using a FE analysis. For an increased strength safety of an inner tank, the tension cable was fastened around the outside wall of an inner tank, which is known as a weak zone for the hydrostatic pressures, cryogenic temperature loads, and other loadings. Based on the FEM computed results between a conventional inner tank and a inner tank with tension cables around the lower part of the side wall of an inner tank, the redesigned inner tank is more safe than that of the conventional tank without a tension cable. The FEM results recommend $3{\sim}4$ steel tension cables with a diameter of 50mm for an increased strength safety of the inner tank, which may decrease the stress concentration and deformation near the lower part of the side wall. Thus the tension cable around the inner tank may be used as an alternative safety device compared to the stiffener and the top girder structures for the increased LNG storage tank, especially.

  • PDF

Basic Characteristic Verification of High-damping Laminated Solar Panel with Viscoelastic Adhesive Tape for 6U CubeSat Applications (점탄성 테이프를 적용한 6U 큐브위성용 고댐핑 적층형 태양전지판의 기본 특성 검증)

  • Kim, Su-Hyeon;Kim, Hongrae;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.86-94
    • /
    • 2021
  • PCB-based deployable solar panel is mainly used for CubeSat due to its lightweight and easy of electrical connection. However, as the size of solar panel increases, there is a limit to ensuring the structural safety of solar cells due to excessive dynamic displacement under launch vibration environment. In previous mechanical designs, for the minimization of dynamic deflection, panel stiffness is increased by applying additional stiffeners made of various materials such as aluminum or composite. However, it could have disadvantages for CubeSat design requirements due to limited mass and volumes. In this study, a high-damping 6U solar panel was proposed. It had superior damping characteristic with a multi-layered stiffener laminated with viscoelastic acrylic tapes. Basic characteristics of this solar panel were measured through free-vibration tests. Design effectiveness of the solar panel was validated through qualification-level launch vibration test. Based on test results, vibration characteristics of a typical PCB solar panel and the high-damping laminated solar panel were predicted and a comparative analysis was performed.