• Title/Summary/Keyword: Stiffened effect

Search Result 148, Processing Time 0.022 seconds

Seismic Fragility Analysis by Boundary Conditions of a Two-pylon Concrete Cable-stayed Bridge (2주탑 콘크리트 사장교의 경계조건별 지진 취약도 분석)

  • Shin, Yeon-Woo;Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.77-85
    • /
    • 2020
  • In this study, the seismic fragility curve according to the boundary conditions is created for a two-pylon concrete cable-stayed bridge, and the effect of the boundary conditions on the seismic fragility of the target bridge is evaluated. An analysis model for the target bridge is constructed using Midas Civil, and a nonlinear time history analysis is performed by applying the fiber element, concrete and rebar material models. The boundary conditions between the pylon and the stiffened girder are classified into four types: rigid, unconstrained, pot bearing, and seismic isolation bearing, and the seismic fragility curves are created for each boundary condition. The plastic hinge section of the pylon, the connection part, and the cable are selected as weak members, and the earthquake vulnerability curve is created for them. As a result of the analysis, it is found that the seismic isolation bearing model shows the lowest damage probability in the pylon and the connection part, and the seismic fragility of the cable is less affected by the boundary conditions than other members.

Effect of stress-strain curve changing with equal channel angular pressing on ultimate strength of ship hull stiffened panels

  • Sekban, Dursun Murat;Olmez, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.473-484
    • /
    • 2021
  • Similar to other structures, ultimate strength values showing the maximum load that the structure can resist without damaging has great importance on ships. Therefore, increasing the ultimate strength values will be an important benefit for the structure. Low carbon steels used in ships due to their low cost and good weldability. Improving the ultimate strength values without interfering with the chemical composition to prevent of the weldability properties of these steels would be very beneficial for ships. Grain refinement via severe plastic deformation (SPD) is an essential strengthening mechanism without changing the chemical composition of metallic materials. Among SPD methods, equal channel angular pressing (ECAP) is one of the most commonly used one due to its capacity for achieving bulk ultrafine-grained (UFG) materials. When the literature is examined, it is seen that there is no study about ultimate strength calculation in ships after ECAP. Therefore, the mean purpose of this study is to apply ECAP to a shipbuilding low carbon steel to be able to achieve mechanical properties and investigate the alteration of ship hull girder grillage system's ultimate strength via finite element analysis approach. A fine-grained (FG) microstructure with a mean grain size of 6 ㎛ (initial grain size was 25 ㎛) was after ECAP. This microstructural evolution brought about a considerable increase in strength values. Both yield and tensile strength values increased from 280 MPa and 425 MPa to about 420 MPa and 785 MPa, respectively. This improvement in the strength values reflected a finite element method to determine the ultimate strength of ship hull girder grillage system. As a result of calculations, it was reached significantly higher ultimate strength values (237,876 MPa) compared the non-processed situation (192,986 MPa) on ship hull girder grillage system.

An algorithm for quantifying dynamic buckling and post-buckling behavior of delaminated FRP plates with a rectangular hole stiffened by smart (SMA) stitches

  • Soltanieh, Ghazaleh;Yam, Michael C.H.
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.745-760
    • /
    • 2021
  • Dynamic buckling of structure is one of the failure modes that needs to be considered since it may result in catastrophic failure of the structure in a short period of time. For a thin fiber-reinforced polymer (FRP) plate under compression, buckling is an inherent hazard which will be intensified by the existence of defects like holes, cracks, and delamination. On the other hand, the growth of the delamination is another prime concern for thin FRP plates. In the current paper, reinforcing the plates against buckling is realized by using SMA wires in the form of stitches. A numerical framework is proposed to simulate the dynamic instability emphasizing the effect of the SMA stitches in suppressing delamination growth. The suggested algorithm is more accurate than the other methods when considering the transformation point of the SMA wires and the modeling of the cohesive zone using simple and yet reliable technique. The computational design of the method by producing the line by line orders leads to a simple algorithm for simulating the super-elastic behavior. The Lagoudas constitutive model of the SMA material is implemented in the form of user material subroutines (VUMAT). The normal bilinear spring model is used to reproduce the cohesive zone behavior. The nonlinear finite element formulation is programmed into FORTRAN using the Newmark-beta numerical time-integration approach. The obtained results are compared with the results obtained by the finite element method using ABAQUS/Explicit solver. The obtained results by the proposed algorithm and those by ABAQUS are in good agreement.

Influence of loading method and stiffening on the behavior of short and long CFST columns

  • Shaker, Fattouh M.F.;Ghanem, Gouda M.;Deifalla, Ahmed F.;Hussein, Ibrahim S.;Fawzy, Mona M.
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.295-307
    • /
    • 2022
  • The objective of this research is to study experimentally the behavior of stiffened steel tubes (CFSTs). Considered parameters are stiffening methods by through-bolts or shear connectors with different configurations. In addition, the effect of global (ratio between length to diameter) and local (proportion between diameter to thickness) slenderness ratios are investigated. Load application either applied on steel only or both steel and concrete is studied as well. Case of loading on steel only happens when concrete inside the column shrinks. The purpose of the research is to improve the behavior of CFSTs by load transfer between them and different stiffening methods. A parametric experimental study that incorporates thirty-three specimens is carried out to highlight the impact of those parameters. Different outputs are recorded for every specimen such as load capacities, vertical deflections, longitudinal strains, and hoop strains. Two modes of failure occur, yielding and global buckling. Shear connectors and through-bolts improve the ultimate load by up to 5% for sections loaded at steel with different studied global slenderness and local slenderness equal 63.5. Meanwhile, shear connectors or through bolts increase the ultimate load by up to 6% for global slenderness up to 15.75 for sections loaded on composite with local slenderness equals 63.50. Recommendations for future design code development are outlined.

Behaviour and strength of back-to-back built-up cold-formed steel unequal angle sections with intermediate stiffeners under axial compression

  • Gnana Ananthi, G. Beulah;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • In cold-formed steel (CFS) structures, such as trusses, transmission towers and portal frames, the use of back-to-back built-up CFS unequal angle sections are becoming increasingly popular. In such an arrangement, intermediate welds or screw fasteners are required at discrete points along the length, preventing the angle sections from buckling independently. Limited research is available in the literature on axial strength of back-to-back built-up CFS unequal angle sections. The issue is addressed herein. This paper presents an experimental investigation reported by the authors on back-to-back built-up CFS unequal angle sections with intermediate stiffeners under axial compression. The load-axial shortening behaviour along with the deformed shapes at failure are reported. A nonlinear finite element (FE) model was then developed, which includes material non-linearity, geometric imperfections and modelling of intermediate fasteners. The FE model was validated against the experimental test results, which showed good agreement, both in terms of failure loads and deformed shapes at failure. The validated finite element model was then used for the purpose of a parametric study comprising 96 models to investigate the effect of longer to shorter leg ratios, stiffener provided in the longer leg, thicknesses and lengths on axial strength of back-to-back built-up CFS unequal angle sections. Four different thicknesses and seven different lengths (stub to slender columns) with three overall widths to the overall depth (B/D) ratios were investigated in the parametric study. Axial strengths obtained from the experimental tests and FE analyses were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparisons show that the current DSM is conservative by only 7% and 5% on average, while predicting the axial strengths of back-to-back built-up CFS unequal angle sections with and without the stiffener, respectively.

A Behavioral Analysis of Curved Steel Box Bridge Associated with Diaphragm's Shape and Spacing (다이아프램 형상 및 간격에 따른 곡선 강박스거더의 거동해석)

  • Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.205-215
    • /
    • 2006
  • In this study 3-D shell FEM model was applied to analyze the behavior of curved steel box girders stiffened by diaphragms. The reliability of the analytical method has been proved by comparing with the existing results. It was also found from this analysis that main factors affecting a distortional stress are length of a girder, curvature of the girder, and spacing of diaphragms. A modelled bridge with 30m of span length and 40m of radius was analyzed to find an optimum spacing of diaphragm, and as a result of applying different spacings, 5m was found to be most appropriate to control the stress ratio regulated by specifications. In the effect of diaphragm shape, the rhamen-typed diaphragm is found to be more effective than the fully filled-up one in the range of opening ratio of 0.4 to 0.6. But, the fully filled-up diaphragm had more efficiency in terms of reducing the distortional stress than X-truss typed diaphragm.

Fluid bounding effect on FG cylindrical shell using Hankel's functions of second kind

  • Khaled Mohamed Khedher;Shahzad Ali Chattah;Mohammad Amien Khadimallah;Ikram Ahmad;Muzamal Hussain;Rana Muhammad Akram Muntazir;Mohamed Abdelaziz Salem;Ghulam Murtaza;Faisal Al-Thobiani;Muhammad Naeem Mohsin;Abeera Talib;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.565-577
    • /
    • 2024
  • Vibration investigation of fluid-filled functionally graded cylindrical shells with ring supports is studied here. Shell motion equations are framed first order shell theory due to Sander. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the Rayleigh-Ritz procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Langrange energy functional is converted into a set of three partial differential equations. A cylindrical shell is immersed in a fluid which is a non-viscous one. These shells are stiffened by rings in the tangential direction. For isotropic materials, the physical properties are same everywhere where the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. After these, ring supports are located at various positions along the axial direction round the shell circumferential direction. The influence of the ring supports is investigated at various positions. Effect of ring supports with empty and fluid-filled shell is presented using the Rayleigh - Ritz method with simply supported condition. The frequency behavior is investigated with empty and fluid-filled cylindrical shell with ring supports versus circumferential wave number and axial wave number. Also the variations have been plotted against the locations of ring supports for length-to-radius and height-to-radius ratio. Moreover, frequency pattern is found for the various position of ring supports for empty and fluid-filled cylindrical shell. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down. It is found that due to inducting the fluid term frequency result down than that of empty cylinder. It is also exhibited that the effect of frequencies is investigated by varying the surfaces with stainless steel and nickel as a constituent material. To generate the fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used.

Local Buckling in Steel Box Girder Bridge with Lifting and Lowering Support Method (지점 상승 하강 공법에 의한 강상자형교의 국부좌굴)

  • Koo, Min Se;Jeong, Jae Woon;Na, Gwi Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.77-85
    • /
    • 2003
  • The lifting and lowering supports method makes up for the weak points in the classical method and provides makes construction economical effect to construction. The application of pre-compression to continuous steel box girder bridges makes it possible to reduce the amount of steel, the height of girders and consequently, the cost consequentlyof the bridges' construction by through the process of concrete filling- up and the lifting-lowering of the inner supports. The lifting and lowering supports method is apt to cause local buckling in the lower flange and web plates by due to the process of the lifting of the inner supports. Therefore iln this study, therefore, the possibility of local buckling could be decreased, in consideration of the lifting force and the buckling strength of stiffened plates, by increasing the number of longitudinal stiffeners and the installation of extended longitudinal stiffeners on the lower flange and the web plates in the range of positive moment.