• Title/Summary/Keyword: Stiffened Structure

Search Result 169, Processing Time 0.028 seconds

Free Vibration Analysis of Stiffened Plates Using Polynomials Having the Property of Timoshenko Beam Functions (Timoshenko 보함수 성질을 갖는 다항식을 이용한 보강판의 교유진동 해석)

  • 김병희;김진형;조대승
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.623-628
    • /
    • 2004
  • In this study, the assumed-mode method using characteristic polynomials of Timoshenko beam is applied for the free vibration analysis of rectangular stiffened plates. The polynomial is derived considering the rotational constraint along the boundary edges of plate and the orthogonal relation of Timoshenko beam functions, which enables to simplify the free vibration analysis of plate structure having various boundary conditions. To verify the validity and effectiveness of the adopted method, numerical analysis for cross-stiffened plates were carried out and its results were compared with those obtained by the general purpose FEA software.

  • PDF

Effect of Stringers in Stiffened Panel under Varying Fatigue Load (일정진폭 및 변동하중을 받는 보강판에서 보강재가 피로균열전파에 미치는 영향)

  • 이억섭;이윤표
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.136-145
    • /
    • 2003
  • The integrity of stiffened panels with stringers in airplane structure is generally enhanced by investigating the fatigue crack propagation behavior in detail and providing the technical methodology to deal with the propagating crack. This paper attempts to clarify the effect of load-ratio on the fatigue crack propagation rate and the fatigue life for the thin aluminum 2024-T3. Both the variable and the constant fatigue loading conditions are considered for the fatigue crack propagation behavior in stiffened panels with stringers.

Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage (작은 충돌손상을 가진 보강판의 최종강도 해석)

  • Lee, Tak-Kee;Rim, Chae-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.34-37
    • /
    • 2007
  • The safety of ships is one of the most important concerns in terms of the environment and human life. A ship in bad condition is likely to be subject to accidents, such as collision and grounding. When a ship has minor collision damages in the form of circle or ellipse, its ultimate strength will be reduced. It is important to evaluate the reduction ratio of a ship's ultimate strength that results from damages. The strength reduction of a plate with a cutout in the form of hole has been treated by many researchers. A closed-form formula for the reduction of ultimate strength of a plate, considering the effect of several forms of cutout, has been suggested. However, the structure of ships is composed of plates and stiffeners so-called stiffened plates and it is likely that plates and stiffeners will be damaged together in collisions. This paper investigates the effect of minor collision damages on the ultimate strength of a stiffened plate by using numerical analysis. For this study, the deformed shape of minor collision damages on a stiffened plate was made by using a contact algorithm and was used as the initial shape for ultimate stress analysis. Then, a series of nonlinear FE analyses was conducted to investigate the reduction effects on the ultimate strength of the stiffened plate. The boundary conditions were simply supported at all boundaries, and the tripping of stiffener was neglected. The results are presented in the form of reduction ratio between the ultimate strength of an original, intact stiffened plate and that of a damaged stiffened plate.

Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage (작은 충돌손상을 가진 보강판의 최종강도 해석)

  • Lee, Tak-Kee;Rim, Chae-Whan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.226-229
    • /
    • 2006
  • The safety of on-going ships is one of important concerns in the view of environment and human life. The ship in bad condition is likely to be subjected to accidental loads such as collision. Once she has one or several minor collision damages in the form of circle or ellipse, her ultimate strength under compression or tension load will be reduced. Here, it is important to evaluate the reduction ratio of ultimate strength due to the damage from safety point of view. The problem of strength reduction of a plate with cutout such as opening hole has been treated by many researchers. As a result, a closed-form formula on the reduction of ultimate strength of a plate considering the effect of several forms of cutout was suggested. However, the structure of ships is composed of a plate and a stiffener so-called a stiffened plate, and it is likely to be damaged at a plate and stiffeners together in collision. This paper is to investigate the effect of minor collision damage on ultimate strength of a stiffened plate by using numerical analysis. For this study, the shape of minor collision damage of a stiffened plate was made by using contact algorithm. The deformed shape was used as an initial shape for ultimate stress analysis. Then, a series of nonlinear FE analysis was conducted to investigate the reduction effects of ultimate strength of the stiffened plate. The boundary condition was applied as simply supported at all boundaries, and the tripping of stiffener among failure mode under compression loading was neglected. These results were settled in the form of reduction ratio between ultimate of original intact stiffened plate and that of damaged stiffened plate.

  • PDF

Axial Collapse Behaviour of Ship's Stiffened Panels considering Lateral Pressure Load (횡하중을 고려한 선체보강판넬의 압축 붕괴거동에 관한 연구)

  • Ko, Jae-Yong;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.235-245
    • /
    • 2007
  • Stiffened steel plates are basic structural members on the deck and bottom structure in ship, offshore. It has a number of one sided stiffeners in either one or both directions, the latter structure was called grillage structure. At the ship structural desgn stage, one of the major consideration is evaluation for ultimate strength of the hull girder. In general, it is accepted that hull girder strength can be represented by the local strength of the longitudinal stiffened panel. In case of considering hogging condition in a stormy sea, stiffened panel was acting on the bottom structure under axial compressive load induced hull girder bending moment, also simultaneously arising local bending moment induced lateral pressure load. In this paper, results of the structural analysis have been compared with another detailed FEA program and prediction from design guideline and a series analysis was conducted consideration of changing parameters for instance, analysis range, cross-section of stiffener, web height and amplitude of lateral pressure load subjected to combined load (axial compression and lateral pressure load). It has been found that finite element modeling is capable of predicting the behaviour and ultimate load capacity of a simply supported stiffened plate subjected to combined load of axial compression and lateral pressure load It is expected that these results will be used to examine the effect of interaction between lateral pressure and axial loads for the ultimate load-carrying capacity based on the Ultimate Limit State design guideline.

Estimation of Buckling and Ultimate Collapse Behaviour of Stiffened Curved Plates under Compressive Load

  • Park, Joo-Shin;Ha, Yeon-Chul;Seo, Jung-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.37-45
    • /
    • 2020
  • Unstiffened and stiffened cylindrically curved plates are often used in ship structures. For example, they can be found on a deck with a camber, a side shell at the fore and aft parts, and the circular bilge part of a ship structure. It is believed that such cylindrically curved plates can be fundamentally modelled using a portion of a circular cylinder. From estimations using cylindrically curved plate models, it is known that the curvature generally increases the buckling strength compared to a flat plate under axial compression. The existence of curvature is also expected to increase both the ultimate and buckling strengths. In the present study, a series of finite element analyses were conducted on stiffened curved plates with several varying parameters such as the curvature, panel slenderness ratio, and web height and type of stiffener applied. The results of numerical calculations on stiffened and unstiffened curved plates were examined to clarify the influences of such parameters on the characteristics of their buckling/plastic collapse behavior and strength under an axial compression.

On the Monlinear Analysis of Ship's Structures -Ultimate Strength Analysis of Plates and Stiffened Plates under Compressive Load- (선체구조물(선체구조물)에 관한 비선형(비선형) 해석연구(해석연구) -압축하중하(壓縮荷重下)의 평판(平板)과 보강판(補剛板)의 극한강도해석(極限强度解析)-)

  • J.D.,Koo;J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 1983
  • In this paper elastic-plastic large deflection analysis of ship structural members, plates, stiffened plates and cylindrical shallow shell, are performed by the finite element method. And for the consideration of the yielded propagation through the depth of the member, the layered element approach is employed. The present method is justified by comparing its results with those of experiment and others. As results, the nonlinear behavior and the ultimate strength curves are shown, which can be used in the design of the plates and the stiffened plates under compression, and the applicability to the shell structures is suggested. The analysis results are as followings. (1) The results of the approximate equations as well as those of buckling analysis may not guarantee precisely the safety of the structures in some cases and the optimum in other cases. Therefore they may not show the design criteria for the optimal design. (2) As the initial deflection increases, its effects on the ultimate strength of the structure generally increases, and the ultimate load, therefore, decreases. (3) This approach can be applied to the shell type structures. (4) The present method can be applied to the various structures composed of plate and beam members, for example, plates with hole and the stiffened plates with hole stiffened by spigot, doubler and/or stiffener, for the optimal design.

  • PDF

Numerical Investigation of Residual Strength of Steel Stiffened Panel Exposed to Hydrocarbon Fire

  • Kim, Jeong Hwan;Baeg, Dae Yu;Seo, Jung Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.203-215
    • /
    • 2021
  • Current industrial practices and approaches are simplified and do not describe the actual behavior of plated elements of offshore topside structures for safety design due to fires. Therefore, it is better to make up for the defective methods with integrated fire safety design methods based on fire resistance characteristics such as residual strength capacity. This study numerically investigates the residual strength of steel stiffened panels exposed to hydrocarbon jet fire. A series of nonlinear finite element analyses (FEAs) were carried out with varying probabilistic selected exposures in terms of the jet fire location, side, area, and duration. These were used to assess the effects of exposed fire on the residual strength of a steel stiffened panel on a ship-shaped offshore structure. A probabilistic approach with a feasible fire location was used to determine credible fire scenarios in association with thermal structural responses. Heat transfer analysis was performed to obtain the steel temperature, and then the residual strength was obtained for the credible fire scenarios under compressive axial loading using nonlinear FEA code. The results were used to derive closed-form expressions to predict the residual strength of steel stiffened panels with various exposure to jet fire characteristics. The results could be used to assess the sustainability of structures at risk of exposure to fire accidents in offshore installations.

A Study on the Buckling Strength of Plate Panels with Opening (유공판의 좌굴강도에 관한 연구)

  • Kim, Ul-Nyeon;Choe, Ick-Heung;Kwon, Jin-Chil;Paik, Jeom-Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.210-224
    • /
    • 2010
  • The aim of the present study is to investigate the buckling strength of plates and stiffened panels with opening under transverse thrust and shear actions. It is observed that the existing design formulation for critical-buckling strength of plates are not valid for perforated plates, because the current design formulation trends can significantly overestimate or underestimate the load-carrying capacity of plates when plates have large opening and/or are thick. A series of eigen value and elastic.plastic large deflection finite element analyses are carried out with varying the aspect ratio of plate, the opening size and location on plate until and after the ultimate strength is reached. Based on the results obtained from the present study, closed-form design formulations for the elastic buckling strength of plates and stiffened panels with opening are derived. The derived design formulations are considered plasticity correction of the material and verified by experimental tests and results of nonlinear finite element computations.

Buckling Strength Analysis of Stiffened Composite Plates for the Optimum Laminate Structure (최적 적층구조를 위한 보강된 복합적층판의 좌굴강도 해석)

  • H.R.,Kim;J.W.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 1989
  • The optimun laminated composition of the stiffened composite plates is studied from the view point of buckling strength. The finite element method is applied to the buckling analysis of the composite plates taking into account the effect of shear deformation through the plate thickness. The stiffened plate model is discretized using plate thickness and symmetrically stacked. Parametric study is carried out for the selection of the optimum laminate structure; optimum fiber angle sequence through the thickness. Laminate structure of $[-45^{\circ}/45^{\circ}/90^{\circ}/0^{\circ}]$, is found to give the best buckling strength. For the case of that layer number is more than eight, best result is obtained when layers of the same fiber angle are put together, leaving the laminate has the same fiber angle sequence as a whole.

  • PDF