• Title/Summary/Keyword: Stiffened Plates

Search Result 160, Processing Time 0.023 seconds

Fatigue Crack Growth Behavior of the Thin-to-Thick Type Stiffened Panels with Bonded Patch (접착 패칭된 박-후판 결합형 보강판의 피로균열성장 거동)

  • Rhee, Hwan-Woo;Kim, Seung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.89-95
    • /
    • 2008
  • Fatigue cracked components often needs to be repaired during service. Standard repair schemes involve strengthening the component by connecting reinforcing members by means of rivets or welding by reducing the crack-tip stress intensity factors. Recent technological advances in fiber reinforced composite materials and adhesive bonding have led to the development of efficient repair schemes. In this study, the influence of various shape parameters on fatigue crack growth in the CCT type uniform thickness plates and the thin-ta-thick type stiffened panels repaired with woven fabric type Kevlar-Epoxy composite patch are studied experimentally.

Crack growth behavior in the lntegrally stiffened plates(1) -Numerical evaluation of SIF (일체형 보강판의 균열성장거동(I)-SIF의 수치해석)

  • Rhee, Hwan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.150-156
    • /
    • 1997
  • Three dimensional finite element analysis was conducted to estimate the effect of shape parameters (plate width and thickness) on the stress intensity factor for crack in the integrally stiffened plate. Analysis was done for width ratios of 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and thickness ratios of 2, 3, 4, 6. Based on these results, an empirical equation of geometry factor is formulated as a function of crack length and thickness ratio.

  • PDF

Average Compressive Strengths of Stiffened Plates for In-Service Vessels Under Lateral Pressure (횡압력을 받는 실선 보강판의 평균압축강도)

  • Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong;Nam, Ji-Myung;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.330-335
    • /
    • 2011
  • This paper presents estimation of average compressive strengths of three types of stiffened panels under lateral pressure and axial compression based on simplified formulas from CSRs and nonlinear FEAs. FEA scenarios are prepared based on the slenderness ratios of the stiffened panels used for in-service vessels. The seven step lateral pressures by 1bar increment are imposed on FE models assuming maximum 30m water height. The number of FEAs for FB-, AB-, and TB-stiffened panels is totally 189 times. FEA results show that existence of pressure can evolves significant reduction of ultimate strengths, meanwhile CSR formulas do not take into account the lateral pressure effect. Lateral pressure acting on the stiffened panel with higher column slenderness ratio more reduces the ultimate strengths than those with smaller column slenderness ratio. A new concept of relative average compressive strain energy instead of the ultimate strength is introduced in order to rationally compare the average compressive strength through complete compressive straining regime. The differences of the ultimate strengths between CSR formulas and FEA results are relatively small for FB- and AB-stiffened panels, but larger discrepancies of relative average compressive strain energies are shown.

Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates

  • Kalali, Hamed;Hajsadeghi, Mohammad;Zirakian, Tadeh;Alaee, Farshid J.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.277-292
    • /
    • 2015
  • Previous research has shown that steel plate shear walls (SPSWs) are efficient lateral force-resisting systems against both wind and seismic loads. A properly designed SPSW can have high initial stiffness, strength, and energy absorption capacity as well as superior ductility. SPSWs have been commonly designed with unstiffened and stiffened infill plates based on economical and performance considerations. Recent introduction and application of corrugated plates with advantageous structural features has motivated the researchers to consider the employment of such elements in stiffened SPSWs with the aim of lowering the high construction cost of such high-performing systems. On this basis, this paper presents results from a numerical investigation of the hysteretic performance of SPSWs with trapezoidally corrugated infill plates. Finite element cyclic analyses are conducted on a series of flat- and corrugated-web SPSWs to examine the effects of web-plate thickness, corrugation angle, and number of corrugation half-waves on the hysteretic performance of such structural systems. Results of the parametric studies are indicative of effectiveness of increasing of the three aforementioned web-plate geometrical and corrugation parameters in improving the cyclic response and energy absorption capacity of SPSWs with trapezoidally corrugated infill plates. Increasing of the web-plate thickness and number of corrugation half-waves are found to be the most and the least effective in adjusting the hysteretic performance of such promising lateral force-resisting systems, respectively. Findings of this study also show that optimal selection of the web-plate thickness, corrugation angle, and number of corrugation half-waves along with proper design of the boundary frame members can result in high stiffness, strength, and cyclic performances of such corrugated-web SPSWs.

A Study on the Secondary Buckling Behavior of Ship Plate (선체판부재의 2차좌굴거동에 관한 연구)

  • 고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 1996
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The main portion of ship structure is usually composed of stiffened plates. In these structures, plate buckling is one of the most important design criteria and buckling load may usually be obtained as an eigenvalue solution of the governing equations for the plate. To use the high tensile steel plate effectively, its thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. When the panel elastic buckling is allowed, it is necessary to get precise understandings about the post-buckling behaviour of thin plates. It is well known that a thin flat plate undergoes secondary buckling after initial buckling took place and the deflection of the initial buckling mode was developed. From this point of view, this paper discusses the post-buckling behaviour of thin plates under thrust including the secondary buckling phenomenon. Series of elastic large deflection analyses were performed on rectangular plates with aspect ratio 3.6 using the analytical method and the FEM.

  • PDF

Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings

  • Ali, Mustafa M.;Osman, S.A.;Husam, O.A.;Al-Zand, Ahmed W.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.361-373
    • /
    • 2018
  • This paper presents the development of finite element (FE) models to simulate the behavior of diagonally stiffened steel plate shear wall systems (SPSWs) with differently shaped openings subjected to a cyclic load. This walling system has the potential to be used for shear elements that resist lateral loads in steel-framed buildings. A number of $\text\tiny{^1/_2}$-scale one-story buildings that were un-stiffened, stiffened and stiffened with opening SPSWs are modeled and simulated using the finite element method based on experimental data from previous research. After validating the finite element (FE) models, the effects of infill plate thickness on the cyclic behavior of steel shear walls are investigated. Furthermore, triple diagonal stiffeners are added to the steel infill plates of the SPSWs, and the effects are studied. Moreover, the effects of a number of differently shaped openings applied to the infill plate are studied. The results indicate that the bearing capacity and shear resistance are affected positively by increasing the infill plate thickness and by adding triple diagonal stiffeners. In addition, the cyclic behavior of SPSWs is improved, even with an opening in the SPSWs.

Estimation of buckling and collapse behaviour for continuous stiffened plate under combined transverse axial compression and lateral pressure (조합하중을 받는 연속보강판의 좌굴 및 붕괴거동 평가)

  • Park, Joo-Shin;Choi, Joung-Hwan;Hong, Kwan-Young;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Estimation of the buckling and ultimate strength of a continuous stiffened plate subjected to combined transverse compression and lateral pressure is of high importance to ensure the safety of ship structures, particularly for the bottom plating under a deep draft condition For example, bottom plating of bulk carriers is subjected to transverse thrust caused by the bending of double bottom structure and the direct action of pressure on the side shells. Most of experimental tests, theoretical approach and numerical researches have been performed on the buckling and ultimate strength behaviour of plates or stiffened plates under combined compression and lateral pressure. With regard to stiffened panels, however, most of studies have been concerned with the load conditions of combined longitudinal thrust and lateral pressure, while fewer studies have been performed for the combined transverse thrust and lateral pressure. In addition, the previous researches are mainly concerned with an isolated rectangular plate simply supported along the all edges, whereas actual ship plating is continuous across the transverse frames and heavy girders. In the present paper, a series of elastoplastic large deflection FEA on a continuous stiffened plate is performed and then clarify the characteristic of collapse mode and explain the effect of transverse compression.

Buckling behaviour of plates partially restrained against rotation under stress gradient

  • Bedair, Osama K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.383-396
    • /
    • 1996
  • In this paper, the behavior of plates partially restrained against rotation under stress gradient is investigated. As a first stage, an energy formulation is presented to model this boundary condition and a general expression is derived for the prediction of the elastic buckling of the plate under this general loading condition. The accuracy of the derived expression is compared numerically using the Galerkin method with other available data for the two limiting conditions of rotationally free and clamped boundaries. Results show that the prediction is within a 5% difference. The influence of rotational restraint and stress gradient upon the buckling load and the associated buckling mode is investigated. Numerical results show sensitivity of the buckling mode to the degree of rotational restraint and the variation of the buckling load with the stress gradient.

On the post-buckling behaviour of plates under stress gradient

  • Bedair, Osama K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.397-413
    • /
    • 1996
  • In this paper the elastic post-buckling behaviour of plates under non-uniform compressive edge stress is investigated. The compatibility differential equations is first solved analytically and then an approximate solution of the equilibrium equation is obtained using the Galerkin method. Explicit expressions are derived for the load-deflection, ultimate strength and membrane stress distributions. Analytical effective width formulations, based on the characteristics of the stress field of the buckled plate, are proposed for this general loading condition. The predicted load-deflection expression is compared with independent test results. Results are also presented detailing the load-deflection behaviour and stress distribution for various aspect ratios.

Influence of stiffener edge on the buckling load of holed composite plates

  • Zakeri, Mahnaz;Mozaffari, Ali;Katirae, Mohamad A.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.681-688
    • /
    • 2018
  • In this paper, buckling load of edge stiffened composite plates is assessed. The effect of stiffener edge size, circular hole, and the fiber orientation angle on buckling behavior of composite plates under uni-axial compressive load is investigated. This paper includes two parts as experimental and numerical studies. L-shape composite plates are manufactured in three different layups. Then the buckling loads are experimentally determined. Subsequently, by using the numerical simulation, the size variation effects of stiffener edge and circular cutout on the plate buckling loads are analyzed in five different layups. The results show that cutout size, stiffener edge height and fiber orientation angle have important effects on buckling load. In addition, there is an optimum height for stiffener edge during different conditions.