• Title/Summary/Keyword: Stiffened Plate

Search Result 267, Processing Time 0.032 seconds

Estimation of Buckling and Ultimate Collapse Behaviour of Stiffened Curved Plates under Compressive Load

  • Park, Joo-Shin;Ha, Yeon-Chul;Seo, Jung-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.37-45
    • /
    • 2020
  • Unstiffened and stiffened cylindrically curved plates are often used in ship structures. For example, they can be found on a deck with a camber, a side shell at the fore and aft parts, and the circular bilge part of a ship structure. It is believed that such cylindrically curved plates can be fundamentally modelled using a portion of a circular cylinder. From estimations using cylindrically curved plate models, it is known that the curvature generally increases the buckling strength compared to a flat plate under axial compression. The existence of curvature is also expected to increase both the ultimate and buckling strengths. In the present study, a series of finite element analyses were conducted on stiffened curved plates with several varying parameters such as the curvature, panel slenderness ratio, and web height and type of stiffener applied. The results of numerical calculations on stiffened and unstiffened curved plates were examined to clarify the influences of such parameters on the characteristics of their buckling/plastic collapse behavior and strength under an axial compression.

Local Buckling Behaviors of Flat-Type Stiffeners in Stiffened Plate System (보강판시스템에 적용되는 판형보강재의 국부좌굴거동)

  • Kim, Kyung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6521-6526
    • /
    • 2013
  • Elastic and nonlinear ultimate strength analyses were conducted to examine the effects of the stiffness and slenderness of flat-type stiffeners on ultimate in-plane strengths of a stiffened plate system. Although it is not feasible to consider local buckling in the stiffeners in elastic analysis, it was confirmed that the in-plane strengths of the stiffened plate system can be achieved by antisymmetric buckling mode when a certain level of stiffness in the stiffeners is provided. Nonlinear ultimate strength analysis, in which initial imperfection and residual stress are incorporated, showed that the ultimate strengths are sensitively affected by the mode shapes for initial imperfections. The slenderness limit for flat-type stiffeners in KHBDC (Korean Highway Bridge Design Code) was evaluated as conservative compared to the analysis results.

Study on Optimum Modification Method of Dynamic Charcteristics of Ship Structures by Multi-level Optimization (다단계최적화방법에 의한 선박구조물의 동특성의 최적변경법에 관한연구)

  • 박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.574-582
    • /
    • 1999
  • This paper discusses the multi-level optimization method in dynamic optimization problems through stiffened plate of ship structures. In structural optimization the computational cost increases rapidly as the number of design variables increases. And we need a great amount of cal-culation and time on problems of modified dynamic characteristics of large and complicated struc-tures. In this paper the multi-level optimization is proposed which decreases computational time and cost. the dynamic optimum designs of stiffened plate that control the natural frequency and minimize weight subjected to constraints condition are derived. The way to apply the multi-level optimization methods in this study follow: In the first step the dynamic characteristics is controlled for the two-dimensional model of stiffened plate by sensitivity analysis and quasi-least squares methods. In the second step the cross-section of the stiffener is decided so that the weight is minimized under needed constraints by the steepest descent or ascent method. In the third the three-dimensional model is made based on the results of the first step and the second step confirmation and finer tuning of the objective function are carried out. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate.

  • PDF

Buckling Analysis of Simple Supported Plate Stiffened with Laminated Composite Panel (복합적층 패널로 보강된 단순지지 판의 좌굴해석)

  • Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.621-628
    • /
    • 2004
  • This paper introduces a new theory, that in a stiffened plate, a steel stiffener could be substituted a composite material in order to prevent from buckling. Changing a steel stiffener into a composite material would not only preclude welding, but could also prevent damage to the material due to fatigue and corrosion.A composite material is assumed to adhere to a steel plate, and is never separated from the plate until the steel plate reaches buckling.Such plate has variable shapes, with different lengths and widths, and also shows an anisotropic material property. LUSAS, a commercial finite element analysis package, was used in the buckling analysis.This paper investigated buckling behavior in anisotropic composite plates with variable parameters.

Development of Designed Formulae for Predicting Ultimate Strength of the Perforated Stiffened Plate subjected to Axial Compressive Loading (압축하중을 받는 유공보강판 구조의 최종강도 설계식 개발)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.435-445
    • /
    • 2007
  • Ship structures are thin-walled structures and lots of cutouts, for example, of inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed. In the present paper, we investigated several kinds of perforated stiffened model from actual ship structure and series of elasto-plastic large deflection analyses were performed to investigate into the influence of perforation on the buckling and ultimate strength of the perforated stiffened plate varying the cutout ratio, web height, thickness and type of cross-section by commercial FEA program(ANSYS). Closed-form formulas for predicting the ultimate strength of the perforated stiffened plate are empirically derived by curve fitting based on the Finite Element Analysis results. These formulas are used to evaluate the ultimate strength, which showed good correlation with FEM results. These results will be useful for evaluating the ultimate strength of the perforated stiffened plate in the preliminary design.

The Modified Method of Orthotropic Rigidities for Stiffened Plates with Open Ribs (개단면 리브를 갖는 보강판에 대한 직교이방성 강성의 보정 방법)

  • Chu, Seok Beom;Choi, Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.191-200
    • /
    • 2004
  • In this paper, the modified method of orthotropic rigidities for stiffened plates with open ribs is proposed to solve the problem of the inaccurate results of the orthotropic plate analysis according to the dimensions of stiffened plates. In analyzing various types of stiffened plates with open ribs using the isotropic and orthotropic plate element, orthotropic plates are found to gave smaller maximum displacements compared to isotropic plates in a range that is smaller than the special rigidity ratio and reversely. Therefore, obtaining a more accurate solution of the orthotropic plate analysis requires modifying the orthotropic rigidities of stiffened plates according to the rigidity ratio. This study presents two modified methods using the displacement function and the displacement ratio. The application of the two methods improves the accuracy of the results of the orthotropic plate analysis, although the modified method using the displacement ratio is better than the method using the displacement function in terms of serviceability and safety. The comparison with the experimental example shows that the proposed modified method improves accuracy. Therefore, the orthotropic plate analysis of stiffened plates with open ribs can achieve more accurate results using the proposed method in this study.

Buckling Analysis of Curved Stiffened Web Plate using Eight and Nine-Node Flat Shell Element with Substitute Shear Strain Field (대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 곡선 보강 복부판의 좌굴해석)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.455-464
    • /
    • 2011
  • In this study, the buckling analysis of the vertically curved stiffened web plate was conducted through finite-element analysis, using an eight- and nine-node flat shell element with a substitute shear strain field. To investigate the buckling behavior of the vertically curved web plate with a longitudinal or vertical stiffener under in-plane moment loading, parametric studies were conducted for the variation of the width (b) and ratio of the bending stiffness of the stiffener to that of the plate (${\gamma}=EI/bD$). The static behavior of the vertically curved web plate without a stiffener was also investigated, and then the buckling abilities of the longitudinal and vertical stiffeners were compared under moment loading.

Nonlinear bending analysis of laminated composite stiffened plates

  • Patel, Shuvendu N.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.867-890
    • /
    • 2014
  • This paper deals with the geometric nonlinear bending analysis of laminated composite stiffened plates subjected to uniform transverse loading. The eight-noded degenerated shell element and three-noded degenerated curved beam element with five degrees of freedom per node are adopted in the present analysis to model the plate and stiffeners respectively. The Green-Lagrange strain displacement relationship is adopted and the total Lagrangian approach is taken in the formulation. The convergence study of the present formulation is carried out first and the results are compared with the results published in the literature. The stiffener element is reformulated taking the torsional rigidity in an efficient manner. The effects of lamination angle, depth of stiffener and number of layers, on the bending response of the composite stiffened plates are considered and the results are discussed.

Radiation characteristics on a stiffened plate structure (보강된 평판구조물의 음향방사특성에 관한 실험적 고찰)

  • Kang, Jun-soo;Kim, Jeung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.879-886
    • /
    • 1998
  • It is very important to understand the vibration and noise characteristics of a structure to developed quiet machines and lessen their noise. In this paper, the vibration and sound radiation characteristics of a simple and a bar-stiffened plate have been investigated using numerical and experimental techniques. In numerical process, FEM analysis has been performed for the vibration level ; the time-space squared and averaged velocity and BEM analysis for sound radiation parameters ; sound power and radiation efficiency. In experimental process, FFT signal processing method has been used. While a power from an exiciter is applied to the structure by using a point contact, sound intensity and vibration level has been measured. Based on these two data, the radiation efficiency has been calculated. Results show that the radiation efficiency for the stiffened structure increases compared to the simple plate, due to the extra edges provided by the stiffener.