• Title/Summary/Keyword: Stevedoring equipment

Search Result 10, Processing Time 0.022 seconds

Performance Evaluation of the Next Generation Stevedoring System at Container Terminal (컨테이너 터미널의 차세대 하역시스템 성능평가)

  • Shin, Jae-Yeong;Ha, Tae-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.253-261
    • /
    • 2007
  • This study aims at newly constructing and evaluating performance of the stevedoring equipment systems in terminals. The stevedoring equipments used in conventional terminals are insufficient in flexibility in their functions or design structure, and most of the stevedoring systems based on such equipments have conventional design, therefore, limited in improving the productivity of terminals both in performance and functionality. The stevedoring equipment systems in terminals, in general, can be subdivided into 4 subsystems of quay, transportation, yard, and gate system, which carry out loading and unloading works with proper facilities and equipments. In this study, a design of next generation stevedoring equipment system comprised of various stevedoring equipments which have superior performance and functionalities to the conventional equipments was proposed, and its performance was evaluated.

A Study on Analysis of the Equipment Combination of Stevedoring System in Port Container Terminal (컨테이너터미널의 하역시스템 장비조합에 대한 분석)

  • Yang Chang-Ho;Choi Yong-Seok;Ha Tae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.289-295
    • /
    • 2004
  • The objective of this paper is to analyze the equipment combination of stevedoring system at port container terminal. In general, the productivity of container terminal is evaluated by productivity of container cranes at apron, but there are other equipment such as transport vehicles and yard cranes. Therefore, a method that can estimate the optimal equipment combination of stevedoring system in container terminal is required. We perform various simulation experiment and analyze equipment combination to improve the productivity. From the application of the case study, we demonstrated the savings effect using mean waiting time rates by the equipment combination.

  • PDF

A Study of Comparison with the Operating Priority Rules of RMGC on Semi-Automated Container Terminal (반자동화 컨테이너터미널의 RMGC 운영방식 비교 분석)

  • Kim, Chan-Ho;Ha, Tae-Young;Yang, Hong-Suk
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.2
    • /
    • pp.1-17
    • /
    • 2010
  • This paper aims to compare four operating priority rules of RMGC (Rail Mounted Gantry Crane) used in semi-automated container terminal. The four priority rules employed in this paper are FCFS (First-come-first-served), LCFS (Last-come-first-served), TOS (Turn-over-served) and NFS (Nearest-first-served). And to compare the four operating priority rules, this paper analyzed productivity of RMGC and CC (Container Crane), waiting time of YT (Yard Truck) and RT (Road Truck) in container yard, and turnaround time of RT in container terminal of each priority rule by using stevedoring simulation. As a result, NFS was evaluated as the best rule to improve the overall productivity of container terminal in terms of all criteria.

Analysis of the Characteristics of Container Ports in Busan Port Using Industrial Organization Approach (산업조직론을 활용한 부산항 컨테이너 하역산업의 특성 분석)

  • Ko, Byoung-Wook;Kil, Kwang-Soo;Lee, Da-Ye
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.3
    • /
    • pp.117-128
    • /
    • 2021
  • In order for the users (shipping firms and shippers) and suppliers (stevedoring firms) in the container terminal industry to win-win, it is necessary to have some appropriate diverse market conditions for the industry. This study analyses the basic conditions and demand and supply characteristics of the industry and investigates the market performance of Busan container ports. First, this article analyses the basic characteristics of demand and supply. As the demand characteristics, there are five ones such as 1) exogeneity of demand, 2) function as export/import transportation and hub for transshipment, 3) increase of users' bargaining power, 4) high substituting elasticity, 5) reduction of volume growth. As the supply characteristics, there are seven ones such as 1) inelasticity of supply, 2) homogeneity of stevedoring services, 3) over-supply, 4) adoption of cutting-edge stevedoring technology, 5) scale economy and impossibility of storage, 6) labor market rigidity, 7) enhancing port's role in SCM. In addition, this study conducts the so-called structure-conduct-performance analysis. For the structure analysis, 1) lacks of scale economy in stevedoring companies, 2) high entry barrier, 3) strengthening of shipping firms' bargaining power, 4) transitory permission scheme for tariff are analyzed. For the conduct analysis, 1) price discrimination between export/import and transshipment, 2) mid-term length of terminal use contract, 3) continuous investment in equipment, 4) low level of cooperation among terminal operating firms are derived. For the performance analysis, 1) inequality in profitability, 2) reduction of export/import cost, 3) delay in adopting cutting-edge technology, 4) idle equipment are analyzed. Following this logical flow, the hypothesis that the market structure influences the market conduct is tested based on the actual dataset. As a future agenda in the conclusion, this article recommends the so-called port industrial policy.

Assessing Greenhouse and Noxious Gas Emissions from Stevedoring Work at the Port of Incheon (인천항 육상하역 작업에 따른 온실가스 및 유해가스 발생 추정)

  • Roh, Younghoon;Chang, Young-Tae
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.4
    • /
    • pp.133-150
    • /
    • 2015
  • This study estimates greenhouse and noxious gas emissions caused by cargo-handling equipment at the Port of Incheon in 2013 by applying the NONROAD Model (U.S. EPA). The port emitted 838.4 tons of NOx and 82,747 tons of CO2. The estimates are 2.4 times higher for NOx and 1.3 times higher for CO2 than those of the Port of Los Angeles. Emissions from general cargo-handling equipment are five times more than those from container cargo-handling equipment. Among the three ports comprising the Port of Incheon, the emissions at the North Port, which handles raw materials for industry are relatively higher than those at the other ports. Compared to the study conducted by Chang et al. (2013, 2014), this study finds that CO2 and NOx emissions per cargo-handling equipment are 10 times higher than the corresponding amounts per ship.

A Systematic Analysis on the Operation of Busan Container Terminal by Computer Simulation (시뮬레이션에 희한 부산컨테이너 터미널 운영의 체계적인 분석)

  • Kim Hyun;Lee Cheol-Yeong
    • Journal of Korean Port Research
    • /
    • v.2 no.1
    • /
    • pp.29-73
    • /
    • 1988
  • Since the middle of 1950's when sea transportation service by container ship was established, containerization has been rapidly spread over the world with realization of intermodalism, and becomes an index of economy growth of a country. Our country has established Pusan Container Terminal at Pusan harbour in 1978 in step with worldwide trend of containerization, and is constructing New Container Terminal at Pusan outharbour which will be completed in 1990. This paper aims to make a quantitative analysis of the Pusan Container Terminal system through the computer simulation, especially focusing on its subsystems such as ship stevedoring system, storage system and transfer system. First, the capacity of various subsystems are evaluated and it is checked whether the current operation is being performed effectively through the computer simulation. Secondly, the suggestion is presented to improve the operation by considering the throughput that Pusan Container Terminal will have to accept until 1990, when New Container Terminal will be completed. The results are as follows ; 1) As the inefficiency is due to the imbalance between various subsystems at Pusan Container Terminal on the basis of about 1.2 million TEU of container traffic, transfer equipment level must be up to 33% for transfer crane, and free period must be reduced into 4/5 days for export/import. 2) On the basis of about 1.4 million TEU of container traffic, transfer equipment level must be up to $12\%$ for gantry crane, $11\%$ for straddle carrier and $66\%$ for transfer crane, and free period must be reduced into 3/4 days for export/import. 3) On the basis of about 1.7 million TEU of container traffic, transfer equipment level must be up to $25\%$ for gantry crane, $28\%$ for straddle carrier and $100\%$ for transfer crane, and free period must be reduced into 3/4 days for export/import. 4) On the basis of about 2 million TEU of container traffic, transfer equipment level must be up to $25\%$ for gantry crane, $30\%$ for straddle carrier and $110\%$ for transfer crane, and free period must be reduced into 2/3 days for export/import, and it is necessary to enlarge storage yard.

  • PDF

On the Countermeasure for Preventing the Accident of Cargo Handling in Port (항만하역관할의 원인분석 및 예방대책에 관하여)

  • 박용욱;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.3
    • /
    • pp.57-68
    • /
    • 1993
  • The economy of Korea has grown up significantly in its scale. It has, therefore, become imperative to develop countermeasures to prevent work related injuries and occupational illnesses resultining from haza-rdous working conditions and handling harmful substances. A lot of cargo handling accident in port have occurred due to the characteristics of poor working environment, diversity of working place and method, fluctuation of the amount of cargo and handling of heavy, long, harmful and dangerous cargo, etc. According to '91 industrial accident analysis carried out by the ministry of labour, the number of the stevedores injured by cargo handling accident in port were 1, 432 persons (the death accident : 22 per-sons), the amount of industrial accident compensation in port was 6.7 billion won (the amount of economic loss : 33.6 billion won), and the injury occurance rate of the stevedoring industry was higher than that of the whole industry. This paper, therefore, aims to the actual status of the stevedoring industry and to extract the main cau-ses of the accidents related to cargo handling in port through factor analysis using the data of the accide-nts in the whole habour from 1990 to 1992, and to suggest the countermeasures to prevent such accident. The main causes of the accident and countermeasures are found to be as follows through the factor analy-sis : Factor1, factor2, and factor3 related to a defect of human being and management, a defect of state and environment, and an insufficiency of education and law are extracted. The short-term countermeasures to prevent these accidents are 1) to consolidate the safety and health organization in the working spot, 2) to secure a safe condition in working spot before dock work, 3) to strengthen a dock worker's safety educa-tion. The long-term countermeasures are 1) to promote a decasualisation of dock workers, 2) to modernize the cargo working methods through constructing exclusive pier and introducing exclusive cargo handling equipment, 3) to establish a exclusive dock accident prevention organization and the dock workers law. Factor 4, factor5, factor6, and factor7 related to an unfitness, a deficiency of technical knowledge, a nonfu-lfilment of safety measures, and a bad arrangement are extracted. The countermeasures to prevent these accidents are 1) to perform a complete safety inspection of cargo handling equipments and tools and to carry out the dock work according to a working plan, 2) to publish and supply technical safety books, safety instruction book, safety check list, etc., 3) to strengthen the safety patrol at the working spot in habour and to activate a safety fund, 4) to maintain always a clean workshop with the safety consciousness in which the good arragement of the working spot is considered to be the beginning of safety.

  • PDF

An Analysis of Container Logistics System by Computer Simulation (시뮬레이션에 의한 컨테이너 물류시스템의 분석에 관하여(BCTOC를 중심으로))

  • 유승열;여기태;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • Because of the sharp increase of its export and import container cargo volumes contrast to the lack of related Container Terminal facility, equipment and inefficient procedure, there is now heavy container cargo congestions in Pusan Container Terminal. As a result of such a situation, many container ships avoid their calls into Pusan port. This is a major cause that in tum kads to weakening intemational competitiveness of the Korean industry. This study, therefore, aims are to make a quantitative analysis of Container Terminal System through the computer simulation, especially focusing on its 4 sub-system of a handling system, 'it is checked whether the current operation is being performed effectively through the computer simulation. The overall findings are as folIows; Firstly, average tonnage of the ships visiting the BCTOC was 32,360 G/T in from January '96, to may '96. The average arrival interval and service time of container ships at BCTOC are 5.63 hours and 18.67 hours respectively. Ship's arrival and service pattern at BCTOC was exponential distribution with 95% confidence and Erlang-4 distribution with 99% confidence. Secondly, average waiting time and number of ships was 9.9 hours, 235 ships(38%) among 620 ships. Number of stevedoring container per ship was average 747.7 TED, standard deviation 379.1 TEU and normal distribution with 99% confidence. Thirdly, from the fact that the average storage days of containers at BCTOC are 2.75 days (3.0 days when import, 2.5 days when export). it is founds that most containers were transfered to the off-dock storage areas with the free periods(5 days when import, 4 days when export), the reason for which is considered to be the insufficient storage area at BCTOC. Fourthly, in the case of gate in-out at BCTOC, occupied containers and emptied containers are 89% and 11% respectively in the gate-in, 75% and 25% seperately in the gate-out. Finally, from the quantitative analysis results for container terminal at BCTOC, ship's average wating time of ships was found to be 20.77 hours and berth occupancy rate(${\rho}$) was 0.83. 5~6 berths were required in order that the berth occupancy rate(${\rho}$) may be maintained up to 60% degree.

  • PDF

A Study on Operational Efficiency Improvement of Perpendicular Layout Container Terminal via introducing Interchange Transport Model (수직형 자동화 컨테이너 터미널 운영 효율성 제고를 위한 인터체인지 이송 모델 도입 방안 연구)

  • Jang, Jae-Hwan;Lee, Jung-Yoon
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.181-186
    • /
    • 2020
  • Until now, the development of design and operation model for automated container terminals has been mainly performed based on the western ports model, specializing in basic loading, and discharging operations. In the case of the Busan port, terminal operators provide basic stevedoring, as well as an additional logistics service known as 'On Dock Service' not suitable for the currently commercialized automated container terminal model. This study diagnosed the current Busan port's throughput structure and terminal operational characteristic, and proposed a modified perpendicular layout container terminal transport model named 'Interchange Transport Model' for effective management of empty container and operation costs. Although the 'Interchange Transport Model' requires an additional number of transport equipment (AGV), concerning operational efficiency and cost saving, a simulation showed 22% reduction of TAT and 9.4% reduction of annual terminal operational costs in comparison to the basic perpendicular layout model.

A Study on High Stacking System Development at Container Terminal (컨테이너 터미널의 고층 장치시스템 개발방안)

  • Ha Tae-Young;Choi Sang-Hei;Kim Woo-Sung;Choi Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.317-323
    • /
    • 2006
  • This paper deals with High Stacking System(HSS) development to develop a next generation port handling system for accommodating mega-sized container ships. It aims to develop the HSS that maximizes handling capacity within the limited space of the port. The system is expected to resolve the problem of yard space shortage as well as utilize innovative technology to ensure high-performance and automation at the terminal so as to enhance stevedoring productivity. The main objectives of this paper is suggesting the design concept drawing the HSS terminal and simulation analysis was undertaken taking into consideration performance of handling equipment, and port handling system Design concept drawing of the HSS terminal and will be used as base data for basic design and detailed design in actual operations of the terminal in the future. The HSS, to be applied to both conventional and new terminals, is expected to act as a catalyst for enhancing the value-added at ports.

  • PDF