• Title/Summary/Keyword: Steroid hormone receptor

Search Result 65, Processing Time 0.026 seconds

The Effect of the Ovarian Steroid Hormone on the Differenciation of the Pseudopregnanct Rat Uterus (가임신 흰쥐 자궁조직 분화에 미치는 난소 스테로이드 호르몬의 영향)

  • Kim, Sung-Rye
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.22 no.2
    • /
    • pp.155-161
    • /
    • 1995
  • The present investigation has been undertaken to elucidate the differentiation mechanism the uterus which is the environment of the embryo development, by demonstrating the role of ovarian steroids hormone in the decidualization of the pseudopregnant rat uterus. To determine the effect of ovarine steroids and artificial stimulation (trauma) on the differenciation of the uterine endometrium and decidualization for implantation, attempt was made to measure concentrations of serum estradiol($E_2$), progesterone($P_4$) and nuclear $P_4$ receptor in the traumatized and non-traumatized uterine tissue of the pseudopregnant rat. The results obtained are as followings : The concentration of serum $E_2$ on day 9(implantation stage) was similar in both of intact pseudopregnant rat(47.63pg/ml) and normal pregnant rat(40.71pg/ml). And among the treated groups, $E_2$ concentration was highest in the $E_2$ treated group in comparision with intact control group(relative value; 73.27%). The concentration of serum $P_4$ was also highest in the $P_4$ treated group(23.12pg/ml). Relative value of $P_4$ treated group in comparision with intact group(24.88pg/ml) was 92.93%. The nuclear $P_4$ receptor levels in the artificial traumatized groups were higher compared with the non-traumatized control groups. This study, therefore, clearly demonstrates that the methods for inducing pseudopregnant (vagina tapping;120/min) and inducing decidualization(oil injection; 0.1ml/uterine horn) appear to be effective, $P_4$ appears to be effective in the differenciation of the uterine endometrial tissue for the implantation process. Concentration of serum $P_4$ seems to be well correlated with the level of the nuclear $P_4$ receptor during the early embryo development. These results seem to be well correlated with ALPase activities in the normal and pseudopregnant rat uterus shown in the previous study.

  • PDF

Methoxychlor Produces Many Adverse Effects on Male Reproductive System, Kidney and Liver by Binding to Oestrogen Receptors

  • Kim, Dae Young
    • Journal of Embryo Transfer
    • /
    • v.28 no.2
    • /
    • pp.157-162
    • /
    • 2013
  • Methoxychlor (MXC) was developed to be a replacement for the banned pesticide DDT. HPTE [2,2-bis (p-hydroxyphenyl)-1,1,1-trichloroethane], which is an in vivo metabolite of MXC, has strong oestrogenic and anti-androgenic effects. MXC and HPTE are thought to produce potentially adverse effects by acting through oestrogen and androgen receptors. Of the two, HPTE binds to sex-steroid receptors with greater affinity, and it inhibits testosterone biosynthesis in Leydig cells by inhibiting cholesterol side-chain cleavage enzyme activity and cholesterol utilisation. In a previous study, MXC was shown to induce Leydig cell apoptosis by decreasing testosterone concentrations. I focused on the effects of MXC on male mice that resulted from interactions with sex-steroid hormone receptors. Sex-steroid hormones affect other organs including the kidney and liver. Accordingly, I hypothesised that MXC can act through sex-steroid receptors to produce adverse effects on the testis, kidney and liver, and I designed our experiments to confirm the different effects of MXC exposure on the male reproductive system, kidney and liver. In these experiments, I used pre-pubescent ICR mice; the puberty period in ICR mice is from postnatal day (PND) 45 to PND60. I treated the experimental group with 0, 100, 200, 400 mg MXC/kg b.w. delivered by an intra-peritoneal injection with sesame oil used as vehicle for 4 weeks. At the end of the experiment, the mice were sacrificed under anaesthesia. The testes and accessory reproductive organs were collected, weighed and prepared for histological investigation. I performed a chemiluminescence immune assay to observe the serum levels of testosterone, LH and FSH. Blood biochemical determination was also performed to check for other effects. There were no significant differences in our histological observations or relative organ weights. Serum testosterone levels were decreased in a dose-dependent manner; a greater dose resulted in the production of less testosterone. Compared to the control group, testosterone concentrations differed in the 200 and 400 mg/kg dosage groups. In conclusion, I observed markedly negative effects of MXC exposure on testosterone concentrations in pre-pubescent male mice. From our biochemical determinations, I observed some changes that indicate renal and hepatic failure. Together, these data suggest that MXC produces adverse effects on the reproductive system, kidney and liver.

Physiological Regulation of Luteinizing Hormone(LH) Expression in Rat Mammary Gland during Differentiation (분화중인 흰쥐 유선내 Luteinizing Hormone (LH) 유전자 발현의 생리적인 조절)

  • 이성호
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.175-180
    • /
    • 2001
  • The ectopic expression of gonadotropin releasing hormone(GnRH and luteinizing hormone(LH) in several tissues is a quite intriguing phenomenon. Recently, the presence of GnRH and its receptor has been clearly demonstrated in rodents and human mammary gland. In this context, one can postulate that the presence of local circuit composed of GnRH and LH in the gland. The present study was undertaken to elucidate whether there is a correlation between the LH expression in rat mammary gland and physiological status during the process of mammary differentiation. LH contents in mammary gland from cycling to weaning rats were measured by radioimmunoassay(RIA). In cycling rats, changes of the LH level in both serum and mammary gland showed similar pattern as the highest level in proestrus and the lowest level in diestrus II stage. While the serum LH levels were fluctuated from pregnant through involution stage, a sharp decline of mammary LH contents was observed in the lactating rats. This decrement was recovered in involuting rats to the level of proestrus stage. Reverse transcription-polymerase chain reaction (RT-PCR) and Southern blot analyses demonstrated that the transcriptional activities of the mammary LH and GnRH were increased from diestrus I stage to estrus stage, and the increased levels were maintained in pregnant, lactation and involution stages. To test the hypothesis that the alteration in mammary LH expression might be steroid-dependant, ovariectomy(OVX) and steroid supplement model was employed. As expected, supplement of estradiol(E$_2$) after OVX remarkably decreased serum LH level compared to that in serum from vehicle-only treated rats. Likewise, administration of E$_2$ significantly reduced the mammary LH content. The present study demonstrated that (i) the LH expression in mammary gland could be altered by some physiological parameters such as estrous cycle, pregnancy, lactation and involution, and (ii) ovarian steroid especially estrogen seems to be one of major endocrine factors which are responsible for regulation of mammary LH expression.

  • PDF

Construction and Validation of Human cDNA Microarray for Estimation of Endocrine Disrupting Chemicals (KISTCHIP-400 ver. 1.0)

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.52-61
    • /
    • 2005
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an awareness of endocrine disrupting chemicals (EDCs) and their potential screening methods to identify endocrine activity have been increased. Here we developed an in-house cDNA microarray, named KISTCHIP-400 ver. 1.0, with 416 clones, based on public database and research papers. These clones contained estrogen, androgen, thyroid hormone & receptors, sex hormone signal transduction & regulation, c-fos, c-myc, ps2 gene, metabolism related genes etc. Also, to validate the KISTCHIP-400 ver. 1.0, we investigated gene expression profiles with reference hormones, $10^{8}\;M\;17{\beta}-estradiol,\;10^{-7}\;M\;testosterone\;and\;10^{-7}\;M$ progesterone in MCF-7 cell line. As the results, gene expression profiles of three reference hormones were distinguished from each other with significant and identified 33 $17{\beta}-estradiol$ responsive genes. This study is in first step of validation for KISTCHIP-400 ver. 1.0, as following step transcriptional profile analysis on not only low concentrations of EDCs but suspected EDCs using KISTCHIP-400 ver. 1.0 is processing. Our results indicate that the developed microarray may be a useful laboratory tool for screening EDCs and elucidating endocrine disrupting mechanism.

Systematic analysis of the pharmacological function of Schisandra as a potential exercise supplement

  • Hong, Bok Sil;Baek, Suji;Kim, Myoung-Ryu;Park, Sun Mi;Kim, Bom Sahn;Kim, Jisu;Lee, Kang Pa
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.4
    • /
    • pp.38-44
    • /
    • 2021
  • [Purpose] Exercise can prevent conditions such as atrophy and degenerative brain diseases. However, owing to individual differences in athletic ability, exercise supplements can be used to improve a person's exercise capacity. Schisandra chinensis (SC) is a natural product with various physiologically active effects. In this study, we analyzed SC using a pharmacological network and determined whether it could be used as an exercise supplement. [Methods] The active compounds of SC and target genes were identified using the Traditional Chinese Medicine Database and Analysis Platform (TCMSP). The active compound and target genes were selected based on pharmacokinetic (PK) conditions (oral bioavailability (OB) ≥ 30%, Caco-2 permeability (Caco-2) ≥ -0.4, and drug-likeness (DL) ≥ 0.18). Gene ontology (GO) was analyzed using the Cytoscape software. [Results] Eight active compounds were identified according to the PK conditions. Twenty-one target genes were identified after excluding duplicates in the eight active compounds. The top 10 GOs were analyzed using GO-biological process analysis. GO was subsequently divided into three representative categories: postsynaptic neurotransmitter receptor activity (53.85%), an intracellular steroid hormone receptor signaling pathway (36.46%), and endopeptidase activity (10%). SC is related to immune function. [Conclusion] According to the GO analysis, SC plays a role in immunity and inflammation, promotes liver metabolism, improves fatigue, and regulates the function of steroid receptors. Therefore, we suggest SC as an exercise supplement with nutritional and anti-fatigue benefits.

Sequence to Structure Approach of Estrogen Receptor Alpha and Ligand Interactions

  • Chamkasem, Aekkapot;Toniti, Waraphan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2161-2166
    • /
    • 2015
  • Estrogen receptors (ERs) are steroid receptors located in the cytoplasm and on the nuclear membrane. The sequence similarities of human $ER{\alpha}$, mouse $ER{\alpha}$, rat $ER{\alpha}$, dog $ER{\alpha}$, and cat $ER{\alpha}$ are above 90%, but structures of $ER{\alpha}$ may different among species. Estrogen can be agonist and antagonist depending on its target organs. This hormone play roles in several diseases including breast cancer. There are variety of the relative binding affinity (RBA) of ER and estrogen species in comparison to $17{\beta}-estradiol$ (E2), which is a natural ligand of both $ER{\alpha}$ and $ER{\beta}$. The RBA of the estrogen species are as following: diethyl stilbestrol (DES) > hexestrol > dienestrol > $17{\beta}-estradiol$ (E2) > 17- estradiol > moxestrol > estriol (E3) >4-OH estradiol > estrone-3-sulfate. Estrogen mimetic drugs, selective estrogen receptor modulators (SERMs), have been used as hormonal therapy for ER positive breast cancer and postmenopausal osteoporosis. In the postgenomic era, in silico models have become effective tools for modern drug discovery. These provide three dimensional structures of many transmembrane receptors and enzymes, which are important targets of de novo drug development. The estimated inhibition constants (Ki) from computational model have been used as a screening procedure before in vitro and in vivo studies.

Small Molecules that Potentiate Neuroectodermal Differentiation of Mouse Embryonic Stem Cells

  • Lee, Jonghwan;Rhee, Ki-Jong;Jung, Dongju
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.32-40
    • /
    • 2013
  • Pluripotent stem cells (PSCs) have enormous potential in the biomedical sciences because they can grow continuously and differentiate into any kind of cell in the body. However, for future application in regenerative medicine, it is still a challenge to control the differentiation of PSCs without using genetic materials. To control the differentiation of PSCs, small molecules might be the best substitute for genetic materials considering the following advantages: small size, which enables penetration of plasma membrane; easy-to-modify structure; and low chance of genetic recombination in treated cells. Herein, we introduce small molecules that induce the neuroectodermal differentiation of mouse embryonic stem cells (ESCs). The small molecules were identified via ESC-based consecutive screenings of small-molecule libraries composed of 324 natural compounds or 93 selected drugs. The natural compounds discovered in the first screening were used to select 93 structurally similar drugs out of 1,200 approved drugs. In the second screening, among the 93 compounds, we found 4 drugs that induced the neuroectodermal differentiation of ESCs. These drugs were progesteroneor corticoid-derivatives. Our results suggest that small molecules targeting the progesterone receptor or glucocorticoid receptor could be used as chemical tools to induce the differentiation of PSCs into a specific germ lineage.

Development and Validation of the Custom Human cDNA Microarray (KISTCHIP-400) for Monitoring Expression of Genes involved in Hormone Disruption

  • Kim, Youn-Jung;Yun, Hye-Jung;Chang, Suk-Tai;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.189.1-189.1
    • /
    • 2003
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity. (omitted)

  • PDF

Endocrinic Effects of Toxaphene and Chlordane in Human Hepatoma Cell (HepG2 Cell) Transfected with Estrogen Receptor and Luciferase Reporter Gene (에스트로겐 수용체 및 Luciferase 리포터 유전자 도입 사람 간 종양세포(HepG2 Cell)에서 Toxaphene과 Chlordane의 내분비 독성)

  • Kim Kyeong-Bae;Jung Ji-Won;Yang Se-Ran;Kang Kyung-Sun;Lee Yong-Soon
    • Toxicological Research
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2004
  • Concern that some chemicals in our environment may affect human health by disrupt-ing normal endocrine function has prompted a research on interactions of environmental contaminants with steroid hormone receptor. Toxaphene and chlordane are among the 12 persistent organic pollutants identified by the United Nations Environment Programme as requiring urgent attention. We compared the estrogenic activity of two organochlorine pesticides, toxaphene and chlordane, at estrogen receptor a (ER$\alpha$) and estrogen receptor $\beta$ (ER$\beta$). Human hepatoma cells (HepG2) were transiently transfected with rat ER$\alpha$ or ER$\beta$ plus an estrogen-responsive complement C3-luciferase (C3-Luc) reporter gene. After transfection, cells were treated with various concentrations of toxaphene and chlordane to investigate agonism or antagonism of these chemicals. Both toxaphene and chlordane were potent agonists in HepG2 cells for ER$\alpha$. In contrast, these chemicals had a minimal agonist activity with ER$\beta$ and almost abolished 17$\beta$-estradiol-induced ER$\beta$-mediated activity. Therefore, toxaphene and chlordane behaved as an ER$\alpha$ agonist and an ER$\beta$ antagonist with estrogen-responsive reporter plasmid C3-Luc, and exposure to these organochlorine pesticides could have a crictical effect on normal endocrine function.

Establishment of Purification and Incubation Conditions of Leydig Cells for Screen Endocrine Disruptors Altering Steroidogenesis (스테로이드 합성을 교란하는 내분비계장애물질 검색을 위한 라이디히 세포 분리 및 배양조건 확립)

  • Kang Il-Hyun;Kang Tae-Seok;Kang Ho-Il;Moon Hyun-Ju;Kim Tae-Sung;Ki Ho-Hyun;Ryu Hye-Won;Sin Jae-Ho;Dong Mi-Sook;Han Soon-Young;Kim Seung-Hee;Hong Jin-Hwan
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.2
    • /
    • pp.53-58
    • /
    • 2006
  • Normally, environmental toxicants are classified as endocrine disruptors if they interfere with regulation of cellular function by endogeneous steroids through inhibition of receptor binding and/or transcriptional activation. So, many studies have been performed about agonist/antagonist of hormone receptor to study mechanisms of endocrine disruptors. If toxicants affect steroid biosynthesis and/or degradation and alter hormone homeostasis, these also are classified as endocrine disruptors. But there are not many studies of the mechanisms of endocrine disruptors on the basis of alteration of steroid biosynthesis and/or degradation. Isolation and culture of Leydig cells from testis is one of methods for the steroidogenesis screening assays to evaluate a substance for altering steroidogenesis. Leydig cells were harvested using the method described by Klinefelter with modifications. Leydig cells were purified by perfusion of testis and incubation ($34^{\circ}C$, 80cycles/minute, 20 minutes) with collagenase (0.25 mg/kg), centrifugal elutriation, percoll gradient centrifugation and BSA multidensity gradient centrifugation. To confirm if this method is one of appropriate tools to evaluate a substance for altering steroidogenesis, ketoconazole, positive control was administered to purified Leydig cells. Ketoconazole ($10^{-8}M$ and above) significantly reduced testosterone production in purified Leydig cells. From above results, we suggest that this method for steroidogenesis screening assay appears to be a appropriate tool to detect suspected compounds for altering steroidogenesis.

  • PDF