• 제목/요약/키워드: Stern shape

검색결과 50건 처리시간 0.018초

선미 형상을 반영한 조종 유체력 미계수 추정에 관한 연구 (A Study on the Maneuvering Hydrodynamic Derivatives Estimation Applied the Stern Shape of a Vessel)

  • 윤승배;김동영;김상현
    • 대한조선학회논문집
    • /
    • 제53권1호
    • /
    • pp.76-83
    • /
    • 2016
  • The various model tests are carried out to estimate and verify a ship performance in the design stage. But in view of the cost, the model test should be applied to every project vessel is very inefficient. Therefore, other methods of predicting the maneuverability with confined data are required at the initial design stage. The purpose of this study is to estimate the hydrodynamic derivatives by using the multiple regression analysis and PMM test data. The characteristics of the stern shape which has an important effect on the maneuverability are applied to the regression analysis in this study. The correlation analysis is performed to select the proper hull form coefficients and stern shape factors used as the variables in the regression analysis. The comparative analysis of estimate results and model test results is conducted on two ships to investigate the effectiveness of the maneuvering hydrodynamic derivatives estimation applied the stern shape. Through the present study, it is verified that the estimation using the stern shape factors as the variables are valid when the stern shape factors are located in the center of the database.

CFD 를 이용한 선미선형 최적화 기법 개발 (Development of CFD Based Stern Form Optimization Method)

  • 김희정;전호환;최희종
    • 대한조선학회논문집
    • /
    • 제44권6호
    • /
    • pp.564-571
    • /
    • 2007
  • In the present study, stern form optimization has been carried out using computational fluid dynamics (CFD) techniques. The viscous pressure drag has been minimized to optimize stern shape. Parametric modification function has been used to modify the shape of the hull. By the use of the parametric modification function and algebraic scheme to grid manipulation, the initial ship geometry was easily deformed according to change of design parameters. For purpose of illustration, KRISO 319K VLCC (KVLCC) is chosen for example ship to demonstrate stern form optimization. The numerical results indicate that the optimized hull yields a reduction in viscous resistance.

트랜섬 선미 후방의 점성 유동장 Topology 관찰 (Topological View of Viscous Flow behind Transom Stern)

  • 김우전;박일룡
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.322-329
    • /
    • 2005
  • Viscous flows behind transom stern are analyzed based on CFD simulation results. Stern wave pattern is often complicated due to the abrupt change of stern surface curvature and flow separation at transom. When a ship advances at high speed, whole transom stern is exposed out of water, resulting in the so-called 'dry transom'. However, in the moderate speed regime, stern wave development in conjunction of flow separation makes unstable wavy surface partially covering transom surface, i.e., the so-called 'wetted transom'. Transom wave formation is usually affecting the resistance characteristics of a ship, since the pressure contribution on transom surface as well as the wave-making resistance is changed. Flow modeling for 'wetted transom' is difficult, while the 'dry transom modeling' is often applied for the high-speed vessels. In the present study CFD results from the RANS equation solver using a finite volume method with level-set treatment are utilized to assess the topology of transom flow pattern for a destroyer model (DTMB5415) and a container ship (KCS). It is found that transom flow patterns are quite different for the two ships, in conformity to the shape of submerged transom. Furthermore, the existence of free surface seems to after the flow topology in case of KCS.

어선 조종성능 특성에 관한 연구 (A study on the characteristics of manoeuvrability of fishing vessel)

  • 이춘기;김수형;이종근;이상민;김민선
    • 수산해양기술연구
    • /
    • 제54권3호
    • /
    • pp.239-245
    • /
    • 2018
  • International Maritime Organization (IMO) has established standards for ship manoeuvrability and applied these standards for vessels over 100 meters in length that built since 2004 (IMO, resolution MSC.137[76]). These standards are no exception to fishing vessels. In this study we carried out a manoeuvring simulation of the new model ship (Stern trawler) of fisheries training ship of Pukyong National University based on Kijima's empirical formula. The formula takes into account of the effect of stern shape or does not take into account of the effect of stern shape. Also we checked whether the simulation results of turning motion of model ship meet IMO manoeuvrability criteria and then compared trajectories between the simulation results of model ship and the results of real sea trial test of the existing ship. In conclusion, Kijima's empirical formulas can estimate the manoeuvrability of fishing vessels at design stage approximately, it needs more parameters of fishing vessel own in case of expressing the manoeuvrability of fishing vessel accurately.

SNUFOAM을 이용한 2차원 선박단면 형상의 입수 충격에 대한 연구 (A STUDY ON WATER ENTRY OF TWO-DIMENSIONAL CROSS-SECTIONAL SHAPE USING SNUFOAM)

  • 장동진;최영민;최학규;이신형
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.55-63
    • /
    • 2016
  • Nowadays, large container ships are continually developed and that's why the bow and stern structural stability problems by slamming become a significant more and more. However, due to the complexity of slamming, it is difficult to consider those problems at the design stage. For this reason, we attempt numerical analysis through SNUFOAM by generating the bow and stern two-dimensional cross-sectional grid in WILS JIP experiment at KRISO. Unlike the conventional method for the computation time saving, by setting the inlet flow conditions referred to the model test, we analyzed the slamming without applying the grid deformation method. As a result, when the stern model, as in the previous studies, it was possible to obtain quantitatively the fluid impulse is close to the experimental results. When the bow model, we can found the change by the position of force sensors which are derived for the bulbous bow and obtained fluid impulse and flow shape at slamming similar to the model test.

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.

바지선 제원 및 선형계수에 따른 침로 안정성 연관연구 (Correlation Study on Course Keeping Stability of Barges according to Variations in Dimensions and Hull Coefficient)

  • 천장호;김문찬;전호환;도인록;구자균
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.27-32
    • /
    • 2011
  • Recently, a ship-shaped barge has been developed to improve the resistance performance, as well as course-keeping capability. However, the stern of the barge is still similar to a box shape, and the vortex generated at the side of the barge creates drag and yaw instability. In order to solve this problem, stern skegs are normally used. The present paper deals with the correlation between the size of the stern skegs and the barge dimensions and hull coefficient. A stern skeg was designed to prevent yaw instability and minimize any additional resistance. The resistance test and course keeping test were performed in the towing tank at Pusan National University. To determine the correlation parameters between the designed stern skeg size and barge dimensions, a parametric study was also performed. Based on the experimental data from five barges, the optimum skeg dimensions were successfully derived. It is expected that the validation of the present study will be carried out by further experiments and computational comparisons in the near future.

초기설계시 선박의 선미 형상을 고려한 조종성능 추정에 관한 연구 (A Study on the Prediction of the Maneuverability of Ships at Initial Design Stage, Considering Stern Form)

  • 이승건;최재영;서영석;이우진
    • 대한조선학회논문집
    • /
    • 제36권2호
    • /
    • pp.72-76
    • /
    • 1999
  • 선박의 조종성능을 추정하기 위해서는 모형시험을 수행하는 것이 가장 신뢰성 있는 방법이다. 그러나 선박의 초기설계단계에서 주요목, 프로펠러 그리고 타의 특성들과 같은 한정된 자료로써 선박의 전반적인 조종성능을 추정하기 위한 다른 방법이 필요하다. 이 논문에서 일본의 연구원들에 의해 수행된 구속 모형시험을 이용하여 Sway Force와 Yaw moment의 선형미계수에 대한 새로운 추정식을 제안하였다. 이 방법에 의해 선박의 조종성능을 평가하는 경우, 선미 Frame Line 형상과 선미 Profile의 영향을 고려할 수 있다. 두 척의 모형선을 대상으로 조종운동 Simulation과 자유항주시험을 비교하여, 본 추정법의 유용성을 검토하였다.

  • PDF

선체(船體) 상부구조물(上部構造物)의 전후진동(前後振動)에 관한 연구(硏究) (A Study on the Fore-and-After Vibration of Superstructure)

  • 김사수;배동명;신구균;노종현
    • 대한조선학회지
    • /
    • 제25권2호
    • /
    • pp.31-43
    • /
    • 1988
  • In recent years increased attention has been directed towards the problems of vibration and noise in superstructure, which have caused major problems with regard to the environmental afterbody of the ship, and the fore-and-after vibration of superstructure due to the vertical vibration of main hull girder is the most important as for the inhabitation of the ship. Accordingly, in this paper, the characteristics of the fore-and after vibration of superstructure and studied systematically with regard to the shape and height of superstructure based on finite element method of beam-like model. The study is divided into two parts, one is the calculation of natural frequencies and the other is the investigation of response at the top of superstructure caused by in its harmonic excitation force at the stern of hull girder. For the natural frequency the calculation results are shown that the higher superstructure is, the lower the natural frequencies of the fore-and-after vibration of superstructure is. It means that the natural frequency of superstructure is close to that of hull girder. The response of vertical direction at the stern of hull girder induced by unit harmonic force is less affected by the shape and the height of superstructure but the response of the fore-and-after direction at the top of superstructure is affected considerably by those of superstructure.

  • PDF

Comparison of Turbulence Models for the Prediction of Wakes around VLCC Hull Forms

  • Kim, Wu-Joan;Kim, Do-Hyun;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • 제5권2호
    • /
    • pp.27-48
    • /
    • 2001
  • Turbulent flow calculations are performed for the two modern practical VLCCs with the sable forebody and the slightly different afterbody, i.e. KVLCC and KVLCC2. Three $\textsc{k}-\varepsilon$ turbulence models are tested to investigate the differences caused by the turbulence models. The calculated results around the two VLCC hull forms using O-O grid topology and profile-fitted surface meshes are compared to the measured data from towing tank experiment. The realizable $\textsc{k}-\varepsilon$model provided realistic wake distribution with hook-like shape, while the standard and RNG-based $\textsc{k}-\varepsilon$models failed. It is very encouraging to see that the CFD with relatively simple turbulence closure can tell the difference quantitatively as well as qualitatively for the two hull forms with stern frameline modification.

  • PDF