• Title/Summary/Keyword: Steric Effect

Search Result 209, Processing Time 0.029 seconds

Curvature Effect on the Barrier from the Physisorption to the Chemisorption of H2 on Graphene

  • Kang, Baotao;Kang, Sun-Woo;Yan, Shihai;Lee, Jin-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.934-938
    • /
    • 2011
  • The curvature dependence of the physisorptions of $H_2$ on graphene surface and their barrier to the chemisorptions has been studied. The graphene with steeper curvature can adsorb $H_2$ stronger due to the more $sp^3$ character of the carbon. However, for the negative curvature, the binding strength of the physisorption and the barrier to the chemisorptions are determined by steric repulsion as well as the $sp^3$ character.

The Effect of Electron-withdrawing Group Functionalization on Antibacterial and Catalytic Activity of Palladium(II) Complexes

  • Feng, Zhi-Qiang;Yang, Xiao-Li;Ye, Yuan-Feng;Hao, Lin-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1121-1127
    • /
    • 2014
  • The design, synthesis, and structural characterization of two new palladium complexes based on Schiff base ligands is reported; $[Pd(L1)_2]$ (1) and $[Pd(L2)_2]$ (2), [HL1 = 2-((E)-(2,6-diethylphenylimino)methyl)-4,6-dibromophenol, L2 = (E)-N-benzylidene-2,6-diethylbenzenamine], which are obtained by functionalizing Schiff base ligands with or without electron-withdrawing groups. Both compounds are mononuclear structures. Comparisons are made to the compounds 1 and 2 to analyze and understand the effect of electron-withdrawing groups. Antibacterial activity studies indicate the electron-withdrawing groups on Schiff base ligands enhance antibacterial activity. Catalytic activity, however, is reduced due to the enhanced steric-hindrance of the electron-withdrawing groups. Electronic absorption and emission properties of HL1, L2, 1 and 2 are also reported.

A Density Functional Theory Study of Additives in Electrolytes of a Dye Sensitized Solar Cell

  • Lee, Maeng-Eun;Kang, Moon-Sung;Cho, Kwang-Hwi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2491-2494
    • /
    • 2013
  • The effect of additives in an electrolyte solution on the conversion efficiency of a dye sensitized solar cell was investigated. A density functional theory (DFT) method was used to examine the physical and chemical properties of nitrogen-containing additives adsorbed on a $TiO_2$ surface. Our results show that additives which cause lower partial charges, higher Fermi level shifts, and greater adsorption energies tend to improve the performance of DSSCs. Steric effects that prevent energy losses due to electron recombination were also found to have a positive effect on the conversion efficiency. In this work, 3-amino-5-methylthio-1H-1,2,4-triazole (AMT) has been suggested as a better additive than the most popular additive, TBP, and verified with experiments.

Analysis of the Heat of Absorption Based on the Chemical Structures of Carbon Dioxide Absorbents (이산화탄소 흡수제의 화학구조별 반응열량 특성 연구)

  • Kwak, No Sang;Lee, Ji Hyun;Eom, Yong Seok;Kim, Jun Han;Lee, In Young;Jang, Kyung Ryoung;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.135-140
    • /
    • 2012
  • In this study, the heats of absorption of $CO_2$ with aqueous solutions of primary, secondary and tertiary amine aqueous solutions were measured in the commercial reaction calorimeter SIMULAR (HEL, UK). The heats of absorption of 30 wt% amine aqueous solutions of MEA (monoethanolamine, primary amine), EAE(2-(ethylamino)ethanol, secondary amine), and MDEA (methyldiethanolamine, tertiary amine) were measured as function of the $CO_2$ loading ratio at $40^{\circ}C$, in each case. In addition, the heats of absorption of sterically-hindered amine aqueous solutions of AMP(2-amino-2-methyl-1-propanol, primary amine), DEA(diethanolamine, secondary amine) and TEA(triethanolamine, tertiary amine) were measured to observe the steric hindrance effect. The heat of absorption is high in the following order regardless of the steric hindrance: primary amine > secondary amine > tertiary amine. The heats of absorption of amines having sterically-hindered substituents surrounding nitrogen atoms are relatively low compare to that of sterically-free amines, although the difference is very small.

Molecular Orbital Studies on the Reaction Path and Reactivity of $S_N2$ Reactions. Determination of Reactivity by MO Theory (Part 69) (SN2 반응의 반응경로 및 반응성에 관한 분자궤도함수 이론적 연구)

  • Lee, Ik Choon;Cho, Jeoung Ki;Lee, Hae Hwang;O, Hyeok Geun
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.239-247
    • /
    • 1990
  • The gas-phase S_N2$ reactions can be classified into neutral bimolecular, solvated, and ionic reactions; the neutral bimolecular reaction proceeds via retention mechanism whereas the ionic reaction produces inversion products. In the reaction of solvated nucleophile with one solvent molecule, a six-center transition state (TS) is formed and the two processes i.e., retention and inversion, are found to compete with a favored path depending on the electronic effect of the nucleophile and substituents in the substrate and on the steric requirement. In the ionic reaction, the difference in the energy barrier between the two processes reduces to a small value when the substrate methyl group is made bulky, leaving ability of the leaving group is improved and at the same time the negative charge of the nucleophile is dispersed. When the reaction center atom in the $S_N2$ reaction is changed to a larger sized second row elements, the activation barrier decreases since the steric crowding in the penta-coordinated TS is relieved. However within the same row, the barrier was found to increase as the atomic size decreased. For the boron, B, the barrier height was the least since in addition to the relatively large atomic size compared to C and N, it forms tetra-coordinated TS so that the steric crowding becomes nearly negligible.

  • PDF

Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate: Effect of Nonleaving Group on Reactivity and Reaction Mechanism

  • Kang, Ji-Sun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1551-1555
    • /
    • 2012
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of benzyl 2-pyridyl carbonate $\mathbf{7}$ and $t$-butyl 2-pyridyl carbonate $\mathbf{8}$ with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. Substrate $\mathbf{8}$ is less reactive than $\mathbf{7}$. Steric hindrance exerted by the bulky $t$-Bu group of $\mathbf{8}$ has been suggested to be responsible for the decreased reactivity. The Br${\o}$nsted-type plots for the reactions of $\mathbf{7}$ and $\mathbf{8}$ are linear with ${\beta}_{nuc}=0.49$ and 0.44, respectively, which is typical for reactions reported previously to proceed through a concerted mechanism. Aminolyses of $\mathbf{7}$ and $\mathbf{8}$ were expected to proceed through a zwitterionic tetrahedral intermediate $T^{\pm}$, which would be stabilized through an intramolecular H-bonding interaction. However, the kinetic results suggest that the reactions proceed through a concerted mechanism. The H-bonding interaction in $T^{\pm}$ has been suggested to accelerate the rate of leaving-group expulsion from $T^{\pm}$. Another factor that might accelerate expulsion of the leaving group is the "push" provided by the RO group in $T^{\pm}$ through resonance interactions. Thus, it has been concluded that the enhanced nucleofugality through the H-bonding interaction and the "push" provided by the RO group forces the reactions to proceed through a concerted mechanism.

Study on Hindered Diffusion of Single Polyelectrolyte Chain in Micro-Pores by Employing Brownian Dynamics Simulations (브라운 동력학 시뮬레이션에 의한 미세기공에서 단일한 다가전해질 사슬의 제한확산 연구)

  • 전명석;곽현욱
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.207-215
    • /
    • 2002
  • The hindered diffusion in confined spaces is an important phenomenon to understand in a micro-scale the filtration mechanism determined by the particle motion in membrane pores. Compared to the case of spherical colloids, both the theoretical investigations and the experiments on the hindered diffusion of polyelectrolytes is actually more difficult, due to lots of relevant parameters resulting from the complicated conformational properties of the polyelectrolyte chain. We have successfully performed the Brownian dynamics simulations upon a single polyeiectrolyte confined in a slit-like pore, where a coarse-grained bead-spring model incorporated with Debye-Huckel interaction is properly adopted. For the given sizes of both the polyelectrolyte and the pore width, the hindered diffusion coefficient decreases as the solution ionic concentration decreases. It is evident that a charge effect of the pore wall enhances the hindered diffusion of polyelectrolyte. Simulation results allow us to make sense of the diffusive transport through the micro-pore, which is restricted by the influences of the steric hindrance of polyelectrolytes as well as the electrostatic repulsion between the polyelectrolytes and pore wall.

QM and Pharmacophore based 3D-QSAR of MK886 Analogues against mPGES-1

  • Pasha, F.A.;Muddassar, M.;Jung, Hwan-Won;Yang, Beom-Seok;Lee, Cheol-Ju;Oh, Jung-Soo;Cho, Seung-Joo;Cho, Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.647-655
    • /
    • 2008
  • Microsomal prostaglandin E2 synthase (mPGES-1) is a potent target for pain and inflammation. Various QSAR (quantitative structure activity relationship) analyses used to understand the factors affecting inhibitory potency for a series of MK886 analogues. We derived four QSAR models utilizing various quantum mechanical (QM) descriptors. These QM models indicate that steric, electrostatic and hydrophobic interaction can be important factors. Common pharmacophore hypotheses (CPHs) also have studied. The QSAR model derived by best-fitted CPHs considering hydrophobic, negative group and ring effect gave a reasonable result (q2 = 0.77, r2 = 0.97 and Rtestset = 0.90). The pharmacophore-derived molecular alignment subsequently used for 3D-QSAR. The CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity Indices Analysis) techniques employed on same series of mPGES-1 inhibitors which gives a statistically reasonable result (CoMFA; q2 = 0.90, r2 = 0.99. CoMSIA; q2 = 0.93, r2 = 1.00). All modeling results (QM-based QSAR, pharmacophore modeling and 3D-QSAR) imply steric, electrostatic and hydrophobic contribution to the inhibitory activity. CoMFA and CoMSIA models suggest the introduction of bulky group around ring B may enhance the inhibitory activity.

Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Nonleaving Groups on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1115-1119
    • /
    • 2013
  • A kinetic study is reported for nucleophilic substitution reactions of benzyl 2-pyridyl thionocarbonate (5b) and t-butyl 2-pyridyl thionocarbonate (6b) with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. General-base catalysis, which has often been reported to occur for aminolysis of esters possessing a C=S electrophilic center, is absent for the reactions of 5b and 6b. The Br${\o}$nsted-type plots for the reactions of 5b and 6b are linear with ${\beta}_{nuc}$ = 0.29 and 0.43, respectively, indicating that the reactions of 5b proceed through a stepwise mechanism with formation of a zwitterionic tetrahedral intermediate ($T^{\pm}$) being the rate-determining step while those of 6b proceed through a concerted mechanism. The reactivity of 5b and 6b is similar to that of their oxygen analogues (i.e., benzyl 2-pyridyl carbonate 5a and t-butyl 2-pyridyl carbonate 6a, respectively), indicating that the effect of modification of the electrophilic center from C=O to C=S (i.e., from 5a to 5b and from 6a to 6b) on reactivity is insignificant. In contrast, 6b is much less reactive than 5b, indicating that the replacement of the $PhCH_2$ in 5b by the t-Bu in 6b results in a significant decrease in reactivity as well as a change in the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway). It has been concluded that the contrasting reactivity and reaction mechanism for the reactions of 5b and 6b are not due to the electronic effects of $PhCH_2$ and t-Bu but are caused by the large steric hindrance exerted by the bulky t-Bu in 6b.

Effects of Polymer Adsorption on Stabilities and CMP Performance of Ceria Abrasive Particles

  • Shimono Norifumi;Kawaguchi Masami;Koyama Naoyuki
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.112-117
    • /
    • 2006
  • In this paper we present that the effects of polymer adsorption on stabilities and CMP performance of ceria abrasive particles. Characterization of ceria abrasive particles in the presence of poly(vinyl pyrrolidone) (PVP) was performed by the measurements of adsorbed amounts of PVP, average sizes, and the back scattering intensities of the ceria abrasive particles as functions of PVP molecular weight and PVP concentration. The ceria abrasive particles in the presence of PVP were used to polish $SiO_2\;and\;Si_3N_4$ films deposited on Si wafers in order to understand the effect of PVP adsorption on chemical mechanical polishing (CMP) performance, together with ceria abrasive particles without PVP. Adsorption of PVP on the ceria abrasive particles enhanced the stability of ceria abrasive particles due to steric stabilization of the thick adsorbed layer of PVP. Removal rates of the deposited $SiO_2\;and\;Si_3N_4$ films by the ceria abrasive particles in the presence of PVP were much lower than those in the absence of PVP and their magnitudes were decreased with an increase in the concentration of free PVP chains in the dispersion media. This suggests that the CMP performance in the presence of PVP could be mainly controlled by the hydrodynamic interactions between the adsorbed PVP chains and the free ones. Moreover, the molecular weight dependence of PVP on the removal rates of the deposited films was hardly observed. On the other hand, high removal rate selectivity between the deposited films in the presence of PVP was not observed.