• 제목/요약/키워드: Steric Effect

검색결과 209건 처리시간 0.03초

아세트산비닐의 삼차부틸알코올계 저온 중합 및 비누화에 의한 고분자량 폴리비닐알코올의 합성 (Synthesis of High Molecular Weight Poly(vinyl alcohol) by Low Temperature Polymerization of Vinyl Acetate in Tertiary Butyl Alcohol and the Following Saponification)

  • 류원석;한성수;최진현;유상우;홍성일
    • 폴리머
    • /
    • 제24권5호
    • /
    • pp.610-620
    • /
    • 2000
  • 아세트산비닐(VAc)을 아조비스디메틸발레로니트릴(ADMVN) 및 삼차부틸알코올 (TBA)을 각각 개시제 및 용매로 하여 30, 40 및 5$0^{\circ}C$에서 용액중합하였다. 합성된 폴리아세트산비닐 (PVAc)을 비누화함으로써 고분자량 혼성배열 폴리비닐알코올(PVA)을 제조하였다. 중합조건들이 전환률, 가지화도 및 PVAc와 PVA의 분자량에 미치는 영향을 고찰하였다. TBA에서의 VAc의 중합 속도는 ADMVN 농도의 0.49승에 비례하였고, 이는 이론치 0.5와 잘 일치하였다. 저온에서 개시가 가능한 ADMVN 및 낮은 사슬이동상수를 갖는 TBA를 사용함으로써 고분자량 및 고수율의 PVA가 얻어졌다. PVAc의 평균 중합도는 전환률 약 35%부터 70%의 범위에서 10000~13000이었고, 이를 비누화하여 얻은 PVA의 평균 중합도는 2400~6100이었다. 교대배열 다이애드기 함량은 중합온도를 낮춤에 따라 조금씩 증가하였고, 중합시 TBA의 입체장애 효과 때문에 TBA의 양을 증가시킴에 따라서도 증가하였다.

  • PDF

Non-volatile Molecular Memory using Nano-interfaced Organic Molecules in the Organic Field Effect Transistor

  • 이효영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.31-32
    • /
    • 2010
  • In our previous reports [1-3], electron transport for the switching and memory devices using alkyl thiol-tethered Ru-terpyridine complex compounds with metal-insulator-metal crossbar structure has been presented. On the other hand, among organic memory devices, a memory based on the OFET is attractive because of its nondestructive readout and single transistor applications. Several attempts at nonvolatile organic memories involve electrets, which are chargeable dielectrics. However, these devices still do not sufficiently satisfy the criteria demanded in order to compete with other types of memory devices, and the electrets are generally limited to polymer materials. Until now, there is no report on nonvolatile organic electrets using nano-interfaced organic monomer layer as a dielectric material even though the use of organic monomer materials become important for the development of molecularly interfaced memory and logic elements. Furthermore, to increase a retention time for the nonvolatile organic memory device as well as to understand an intrinsic memory property, a molecular design of the organic materials is also getting important issue. In this presentation, we report on the OFET memory device built on a silicon wafer and based on films of pentacene and a SiO2 gate insulator that are separated by organic molecules which act as a gate dielectric. We proposed push-pull organic molecules (PPOM) containing triarylamine asan electron donating group (EDG), thiophene as a spacer, and malononitrile as an electron withdrawing group (EWG). The PPOM were designed to control charge transport by differences of the dihedral angles induced by a steric hindrance effect of side chainswithin the molecules. Therefore, we expect that these PPOM with potential energy barrier can save the charges which are transported to the nano-interface between the semiconductor and organic molecules used as the dielectrics. Finally, we also expect that the charges can be contributed to the memory capacity of the memory OFET device.[4]

  • PDF

Study of Corrosion of Brass Coated Steel Cords in the Acetonitrile Solution of Sulfenamide Derivatives by Tafel Plot and AC Impedance Measurements

  • Young Chun Ko;Byung Ho Park;Hae Jin Kim;Q Won Choi;Jongbaik Ree;Keun Ho Chung
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권2호
    • /
    • pp.122-126
    • /
    • 1994
  • Corrosion of brass coated steel cords in the acetonitrile solution of sulfenamide derivatives, N-Cyclohexylbenzothiazole-2-sulfenamide (CBTS), N,N'-Dicyclohexylbenzothiazole-2-sulfenamide (DCBS), N-tert-Butylbenzothiazole-2-sulfenamide (TBBS), N-tert-Amylbenzothiazole-2-sulfenamide (TABS), and N-Oxydiethylbenzothiazole-2-sulfenamide (OBTS) was investigated by potentiostatic anodic and cathodic polarization (Tafel plot), DC polarization resistance, and AC impedance measurements. The corrosion current densities and rates are 1.236 ${\mu}A /cm^2$ and 0.655 MPY for CBTS; 1.881 ${\mu}A/cm^2$ and 0.988 MPY for DCBS; 2.367 ${\mu}A/cm^2$ and 1.257 MPY for TBBS; 3.398 ${\mu}A /cm^2$ and 1.809 MPY for TABS, respectively. OBTS among derivatives under study shows the lowest corrosion density (0.546 ${\mu}A /cm^2$) and the slowest corrosion rate (0.288 MPY). Also, the charge transfer resistances and the double layer capacitances are 275.21 $k{\Omega}{\cdot}cm^2$ and 7.0 ${\mu}F{cdot}cm^{-2}$ for CBTS; 14.24 ${\mu}F{\cdot}cm^2$ and 26 ${\mu}F{\cdot}cm^{-2}$ for DCBS; 54.15 $k{\Omega}{\cdot}cm^2$ and 26 ${\mu}F{\cdot}cm^{-2}$ for TBBS; 0.96$k{\Omega}{\cdot}cm^2$ and 83 ${\mu}F{\cdot}cm^{-2}$ for TABS, respectively. The weaker the electron donating inductive effect of derivatives is and the smaller the effect of steric hindrance is, the more the corrosion of brass coated steel cords in the acetonitrile solution of sulfenamide derivatives is prevented. The above results agree with that observed in the field of tire industry.

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

촉매량의 Piperidine-1-oxyl과 NaOCl계에서 벤질 에테르 유도체들의 산화 반응 (Oxidation of Benzyl Ethers in Sodium Hypochlorite Mediated Piperidine-1-oxyl System)

  • 조남숙;박찬헌
    • 대한화학회지
    • /
    • 제39권8호
    • /
    • pp.657-665
    • /
    • 1995
  • 여러가지 비대칭 벤질 에테르들과 벤질 알킬 에테르들을 $CH_3CO_2Et$-NaOCI수용액(6.6 mol eq.)의 2상 용매계에서 4-methoxy-2, 2, 6, 6,-tetramethylpiperidine-1-oxyl(0.03 mol eq., 4-methoxy-TEMPO)을 이용하여 산화시키면 벤조에이트로 산화가 일어난다. 4-methoxy-TEMPO는 2차 산화제인 NaOCI에 의하여 본반응의 산화제인 N-oxo-4-2, 2, 6, 6, -tetramethyl-piperidium 염(N-oxoammonium 염)으로 변환된다. N-oxoammonium 염은 에테르를 산화시키고 N-hydroxy-4-methoxy-2, 2, 6, 6,-tetramethylpiperidine(hydroxyamine)으로 환원된다. Hydroxy-amine은 NaOCI에 의하여 N-oxoammonium 염으로 순환 재생되므로 4-methoxy-TEMPO는 촉매량 사용하였다. 이 반응은 또한 조촉매인 KBr(0.03 mol eq.)가 필수적이고 반응 중 pH는 8.0 이하로 유지되어야 한다. 0 - 5$^{\circ}C$의 반응 온도로 2.5시간 반응시키면 대부분 벤조에이트로 산화 되었다. 벤질 알킬 에테르들의 선택성 산화는 수소의 산도와 알킬기의 입체효과에 영향을 받음이 고찰되었다.

  • PDF

모세관 기체 크로마토그래피에 의한 치환된 Cyclodextrin 정지상을 이용한 알코올 유도체의 키랄분리 (Chiral Separation of Derivatized Racemic Alcohols on Substitued Cyclodextrin Stationary Phases by Capillary Gas Chromatography)

  • 이선행;서영주;이광필
    • 대한화학회지
    • /
    • 제39권2호
    • /
    • pp.94-102
    • /
    • 1995
  • 모세관 기체크로마토그래피에 의한 cyclodextrin 정지상들(PH-${\beta}$-CD, DA-${\beta}$-CD, TA-${\gamma}$-CD)을 이용하여 라세미 알코올들과 그 유도체들의 분리를 연구하였다. 실험에 사용한 모든 알코올들은 trifluoro acetic anhydride, acetic anhydride, trichloro acetic anhydride를 써서 유도화하였다. 거울상체들의 분리선택성은 acylation 시약의 형태에 상당히 의존하는 것을 알았다. 알코올과 그 유도체들의 광학분활에 대한 최상의 실험조건은 용질분자들의 극성에 따라 다르다. 그리고 키랄분리에 관해서 온도, 컬럼이 극성, 수소 결합력, 알코올과 CD 정지상의 입체효과 등의 의존에 관한 연구를 행하였다. 키랄 인식 기구는 키랄 정지상의 종류에 의존하지 않고, 라세미 알코올의 유도체화에 의존하는 것으로 나타났다.

  • PDF

Aliphatic Ketone과 Alicyclic Ketone의 Semicarbazone 생성반응에 관한 연구 (Studies on the Semicarbazone Formation of Aliphatic and Alicyclic Ketones.)

  • 임락빈;오양환;김용인
    • 한국응용과학기술학회지
    • /
    • 제8권1호
    • /
    • pp.59-67
    • /
    • 1991
  • The reactions of semicarbazide hydrochloride with aliphatic and alicyclic ketones were studied kinetically at 15, 25, 35 and 45$^{\circ}C$ in 20% ethanol solution buffered at pH 2.9. The rate of cyclohexanone semicarbazone formation is 5.5 times as fast as that of cyclopentanone semicarbazone, while 3-pentanone semicarbazone is 4.7 times as slow as that of 2-pentanone, The activation energy of cyclohexanone, 2-pentanone, 2 hexanone, cyclopentanone, 4-methyl-2-pentanone and 3-pentanone semicarbazone formation are calculated 5.08, 7.52, 8.79, 9.59, 9.49, 11.59, respectively. It is concluded from the effect of ionic strength that the reaction is affected by not ion but neutral molecules being progressed hydrogen bond between oxygen atom of carbonyl group and hydrogen atom of acid-catalyst and concerted nucleophilic attack of free base on the carbonly compound. Dependence on pH of the rate of 2-pentanone semicarbozone formation is linear relationship below pH 4.60 and above pH 5.60. As a result of studing citric acid catalysis, second order constants increase linearly with citric acid concentration. As the catalyst concentration is varied from 0.025 to 0.10 mol/1 at pH 2.90, the rate constants increase 1.4 times, but slight increase is observed at pH 5.60. Conclusively, the rate-determining step is formation of tetrahedral interemediate below pH 4.65 and dehydration between pH 5.60 and pH 7.11. It is concluded that the formation reaction of cyclohexanone semicarbazone is faster than cyclopentanone semicarbazone due to the steric strain in the process of forming tetrahedral intermediate.

위성자료(NOAA, Topex/Poseidon)를 이용한 한반도 주변해역의 기후적 특성 (On Climatic Characteristics in the East Asian Seas by satellite data(NOAA, Topex/Poseidon))

  • 윤홍주
    • 한국환경과학회지
    • /
    • 제10권6호
    • /
    • pp.423-429
    • /
    • 2001
  • Satellite data, with sea surface temperature(557) by NOAA and sea level(SL) by Topex/poseidon, are used to estimate characteristics on the variations and correlations of 557 and SL in the East Asian Seas from January 1993 through May 1998. We found that there are two climatic characteristics in the East Asian seas the oceanic climate, the eastern sea of Japan, and the continental climate, the eastern sea of China, respectively. In the oceanic climate, the variations of SL have the high values in the main current of Kuroshio and the variations of 557 have not the remarkable seasonal variations because of the continuos compensation of warm current by Kuroshio. In the continental climate, SL has high variations in the estuaries(the Yellow River, the Yangtze River) with the mixing the fresh water and the saline water in the coasts of continent and 557 has highly the seasonal variations due to the climatic effect of continents. In the steric variations of summer, the eastern sea of Japan, the East China Sea and the western sod of Korea is increased the sea level about 10~20cm. But the Bohai bay in China have relatively the high values about 20~30cm due to the continental climate. generally the trends of SST and SL increased during all periods. That is say, the slopes of 557 and SL Is presented 0.29$^{\circ}C$/year and 0.84cm/year, respectively. The annual and semi-annual amplitudes have a remarkable variations in the western sea of Korea and the eastern sea of Japan. In the case of the annual peaks, there appeared mainly In the western sea of Korea and the eastern sea of .Japan because of the remarkable variations of SL associated with Kuroshio. But in the case of the semi-annual peaks, there appeared in the eastern sea of Japan by the influence of current, and in the western sea of Korea by the influence of seasonal temperature, respectively. From our results, it should be believed that 557 and SL gradually Increase in the East Asian seas concerning to the global warming. So that, it should be requested In the international co-operation against In the change of the abnormal climate.

  • PDF

Imazethapyr 유도체의 제초활성에 미치는 3-(N-methyl-N-(X)-치환-phenylaminooxoacetyl) group의 영향 (Influence of 3-(N-methyl-N-X(sub.)phenylaminooxoacetyl) group on the herbicidal activity of Imazethapyr derivatives)

  • 성낙도;김현재;장해성;김대황
    • Applied Biological Chemistry
    • /
    • 제36권5호
    • /
    • pp.381-386
    • /
    • 1993
  • 새로운 25종의 Imazethapyr 유도체, (2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-3-(N-methyl-N-(X)치환-phenylaminooxoacetyl)-5-methylpyridine)들을 합성하여 치환기(X) 변화에 따른 발아 전 후, 피(Echinochla crus-galli.)의 제초활성에 미치는 3-(N-mothy-N-(X)치환-phenylaminoozoacetyl) group의 영향을 검토한 바, 발아 전보다 발아 후의 제초활성에 더 큰 영향을 미침을 알 수 있었다. 발아 후의 제초활성은 X-치환기의 전자밀게 효과와 입체상수 $(E_s)$에 의존적이었으며 가장 큰 제초활성을 나타내는 화합물로는 $bulky(E_s<0)$하고 전자밀게$(\sigma<0)$가 치환된 화합물, 15(4-t-butyl group)와 20(3,5-dimethyl group)이었다. 그리고 높은 제초활성을 나타낼 것으로 예상되는 화합물의 조건들이 검토되었다.

  • PDF

Anomalous Behavior of the Ethyl Group in the Aminolysis of S-Phenyl Acetate with Benzylamine in Acetonitrile

  • Lee, Ik-Choon;Lee, Hai-Whang;Lee, Byung-Choon;Choi, Jin-Heui
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.201-204
    • /
    • 2002
  • The rates of the aminolysis of S-phenyl substituted-acetate series $(RC(=O)SC_6H_4Z$, with R=Me, Et, i-Pr, t-Bu and Bn) with benzylamines $(XC_6H_4CH_2NH_2)$ are not correlated simply with the Taft's polar $({\sigma}^{\ast})$ and/or steric effect constants $(E_s)$ of the substituents due to abnormally enhanced rate of the substrate with R=Et. Furthermore, the cross-interaction constant, ${\rho}x_z$ , is the largest with R=Et. These anomalous behaviors can only be explained by invoking the vicinal bond $({\sigma})$-antibond $({\sigma}^{\ast})$ charge transfer interaction between C-$C{\alpha}$ and C-S bonds. In the tetrahedral zwitterionic intermediate, $T^{\pm}$ , formed with R=Et the vicinal ${\sigma}_{c-c}-{\sigma}^{\ast}_{c-s}$ delocalization is the strongest with an optimum antiperiplanar arrangement and a narrow energy gap, ${\Delta}{\varepsilon}={\varepsilon}_{{\sigma}^{\ast}}-{\varepsilon}_{\sigma}$. Due to this charge transfer interaction, the stability of the intermediate increases (with the concomitant increase in the equilibrium constant K (= $k_a/k_{-a}$)) and also the leaving ability of the thiophenolate leaving group increases (and hence $k_b$ increases) so that the overall rate, $k_n\;=\;Kk_b$, is strongly enhanced. Theoretical support is provided by the natural bond orbital (NBO) analyses at the B3LYP/6-31+$G^{\ast}$ level. The anomaly exhibited by R=Et attests to the stepwise reaction mechanism in which the leaving group departure is rate limiting.