• Title/Summary/Keyword: Stereotactic Radiosurgery

Search Result 200, Processing Time 0.027 seconds

THREE-DIMENSIONAL VERIFICATION OF INTRACRANIAL TARGET POINT DEVIATION USING MRI-BASED POLYMER-GEL DOSIMETRY FOR CONVENTIONAL AND FRACTIONATED STEREOTACTIC RADIOSURGERY

  • Lee, Kyung-Nam;Lee, Dong-Joon;Suh, Tae-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.107-118
    • /
    • 2011
  • Conventional (SRS) and fractionated (FSRS) stereotactic radiosurgery necessarily require stringent overall target point accuracy and precision. We determine three-dimensional intracranial target point deviations (TPDs) in a whole treatment procedure using magnetic resonance image (MRI)-based polymer-gel dosimetry, and suggest a technique for overall system tests. TPDs were measured using a custom-made head phantom and gel dosimetry. We calculated TPDs using a treatment planning system. Then, we compared TPDs using mid bi-plane and three-dimensional volume methods with spherical and elliptical targets to determine their inherent analysis errors; finally, we analyzed regional TPDs using the latter method. Average and maximum additive errors for ellipses were 0.62 and 0.69 mm, respectively. Total displacements were 0.92 ${\pm}$ 0.25 and 0.77 ${\pm}$ 0.15 mm for virtual SRS and FSRS, respectively. Average TPDtotal at peripheral regions was greater than that at central regions for both. Overall system accuracy was similar to that reported previously. Our technique could be used as an overall system accuracy test that considers the real radiation field shape.

A Study for Optimal Dose Planning in Stereotactic Radiosurgery

  • Suh, Tae-suk
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.23-29
    • /
    • 1990
  • In order to explane the stereotactic procedure, the three steps of the procedure (target localization, dose planning, and radiation treatment) must be examined separately. The ultimate accuracy of the full procedure is dependent on each of these steps and on the consistancy of the approach The concern in this article was about dose planning, which is a important factor to the success of radiation treatment. The major factor in dose planning is a dosimetry system to evaluate the dose delivered to the target and normal tissues in the patient, while it generates an optimal dose distribution that will satisfy a set of clinical criteria for the patient. A three-dimensional treatment planning program is a prerequisite for treatment plan optimization. It must cover 3-D methods for representing the patient, the dose distributions, and beam settings. The major problems and possible modelings about 3-D factors and optimization technique were discussed to simplify and solve the problems associatied with 3-D optimization, with relative ease and efficiency. These modification can simplify the optimization problem while saving time, and can be used to develop reference dose planning system to prepare standard guideline for the selection of optimum beam parameters, such as the target position, collimator size, arc spacing, the variation in arc length and weight. The method yields good results which can then be simulated and tailored to the individual case. The procedure needed for dose planning in stereotactic radiosurgery is shown in figure 1.

  • PDF

QA of a stereotactic radiosurgery system for clinical application (정위방사선수술 시스템의 임상 적용을 위한 QA)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.89-94
    • /
    • 1999
  • We developed a sterotactic radiosurgery system which is comprised of 1) collimators with small circular aperture, 2) an angiographic target localizer, 3) a target localizer used for alignment of planned target position with isocenter of treatment machine, and 4) a treatment planning system named LinaPel. In this study, we performed a series of treatment simulations to specify and analyze geometrical errors contained our in-house radiosurgery system. As results, 1) using Geometrical Phantom(Radionics,USA), the accuracy of target localization by LinaPel was determined as Avg. =(equation omitted) the accuracy of mechanical isocenter was found out to be 0.6 $\pm$ 0.2 mm, 3) the positional difference of target localization which determined by CT and angiography was 0.8 mm, and their size difference was 1.5 mm, and 4) the positional error during whole treatment was found out to be 0.9 $\pm$ 0.3 mm. With these results, we concluded that our in-house radiosurgery system can be used clinically. However, these range of accuracies need periodical quality assurance strongly.

  • PDF

Change in Plasma Vascular Endothelial Growth Factor after Gamma Knife Radiosurgery for Meningioma : A Preliminary Study

  • Park, Seong-Hyun;Hwang, Jeong-Hyun;Hwang, Sung-Kyoo
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.2
    • /
    • pp.77-81
    • /
    • 2015
  • Objective : The purpose of this study was to investigate changes in the plasma level of vascular endothelial growth factor (VEGF) after Gamma Knife radiosurgery (GKRS) for the treatment of meningioma. Methods : Fourteen patients with meningiomas had peripheral venous blood collected at the time of GKRS and at 1 week, 1 month, 3 month and 6 month visits. Plasma VEGF levels were measured using commercially available enzyme-linked immunosorbent assay. For controls, peripheral blood samples were obtained from 20 healthy volunteers. Results : The mean plasma VEGF level (29.6 pg/mL) in patients with meningiomas before GKRS was significantly lower than that of the control group (62.4 pg/mL, p=0.019). At 1 week after GKRS, the mean plasma VEGF levels decreased to 23.4 pg/mL, and dropped to 13.9 pg/mL at 1 month, 14.8 pg/mL at 3 months, then increased to 27.7 pg/mL at 6 months. Two patients (14.3%) with peritumoral edema (PTE) showed a level of VEGF 6 months after GKRS higher than their preradiosurgical level. There was no significant association found in an analysis of correlation between PTE and tumor size, marginal dose, age, and sex. Conclusion : Our study is first in demonstrating changes of plasma VEGF after stereotactic radiosurgery (SRS) for meningioma. This study may provide a stimulus for more work related to whether measurement of plasma level has a correlation with tumor response after SRS for meningioma.

Determination of Target Position with BRW Stereoatic Frame in non-orthogonal CT scans (비직교성 전산화단층촬영에서 뇌정위수술용 좌표계를 이용한 표적위치 결정)

  • Park, Tae-Jin;Kim, Ok-Bae;Son, Eun-Ik
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.53-62
    • /
    • 1992
  • Stereotactic implantation of intracranial lesions, and the development of stereotactic convergent irradiation, radiosurgery, techniques have to obtain the accurate coordinates of the tumor locations and that of critical organ. Computed tomography(CT) provides relatively precise imformations of tumor localization and surround the normal organs for conventional radiotherapy. This CT image use to extend for stereotactic radiosurgery procedures. Since the convergent irradiation technique in linear accelerator requires the target center coincident with gantry isocenter or radosurgery frame, the target coordinates must be described in accurately. We used the BRW stereotactic system for describing the target position in CT images This algorithm provides the coordinate conversions for orthogonal or non-orthogonal CT scan image. In this experiments, the target positions have shown the small discripancy within :to.3mm uncertanty in several known target positions in the phantom through the provided programs and it compared to that of BRW stereotactic systems.

  • PDF

Upfront Stereotactic Radiosurgery for Pineal Parenchymal Tumors in Adults

  • Park, Jong Hoon;Kim, Jeong Hoon;Kwon, Do Hoon;Kim, Chang Jin;Khang, Shin Kwang;Cho, Young Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.4
    • /
    • pp.334-340
    • /
    • 2015
  • Objective : Pineal parenchymal tumors (PPTs) in adults are rare, and knowledge regarding their optimal management and treatment outcome is limited. Herein, we present the clinical results of our series of PPTs other than pineoblastomas managed by stereotactic radiosurgery (SRS) at upfront setting. Methods : Between 1997 and 2014, nine consecutive adult patients with the diagnosis of PPTs, either pineocytoma or pineal parenchymal tumor of intermediate differentiation, were treated with SRS. There were 6 men and 3 women. The median age was 39 years (range, 31-53 years). All of the patients presented with symptoms of hydrocephalus. Endoscopic third ventriculostomy and biopsy was done for initial management. After histologic diagnosis, patients were treated with Gamma Knife with the mean dose of 13.3 Gy (n=3) or fractionated Cyberknife with 32 Gy (n=6). Results : After a mean follow-up of 78.6 months (range, 14-223 months), all patients were alive and all of their tumors were locally controlled except for one instance of cerebrospinal fluid seeding metastasis. On magnetic resonance images, tumor size decreased in all patients, resulting in complete response in 3 patients and partial response in 6. One patient had experienced temporary memory impairment after SRS, which improved spontaneously. Conclusion : SRS is effective and safe for PPTs in adults and can be considered as a useful alternative to surgical resection at upfront setting.

Systemic Expression of Vascular Endothelial Growth Factor in Patients with Cerebral Cavernous Malformation Treated by Stereotactic Radiosurgery

  • Park, Sang-Jin;Park, Seong-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.442-448
    • /
    • 2016
  • Objective : Increased expression of angiogenic factors, such as vascular endothelial growth factor (VEGF), is associated with the pathogenesis of cerebral cavernous malformations (CCMs). The purpose of this study was to investigate plasma levels of VEGF in normal subjects and in patients with CCM and to evaluate change in these levels following stereotactic radiosurgery (SRS). Methods : Peripheral venous blood was collected from 6 patients with CCM before SRS using Gamma Knife and at the 1 week, 1 month, 3month, and 6 month follow-up visits. Plasma VEGF levels were measured using commercially available enzyme-linked immunosorbent assay kits. Peripheral blood samples were obtained from 10 healthy volunteers as controls. Results : Mean plasma VEGF level of 41.9 pg/mL (range, 11.7-114.9 pg/mL) in patients with CCM at baseline was higher than that of the healthy controls (29.3 pg/mL, range, 9.2-64.3 pg/mL), without significant differences between CCM patients and controls (p=0.828). Plasma VEGF level following SRS dropped to 24.6 pg/mL after 1 week, and decreased to 18.5 pg/mL after 1 month, then increased to 24.3 pg/mL after 3 months, and 32.6 pg/mL after 6 months. Two patients suffering from rebleeding after SRS showed a higher level of VEGF at 6 months after SRS than their pretreatment level. Conclusion : Plasma VEGF levels in patients with CCM were elevated over controls at baseline, and decreased from baseline to 1 month after SRS and increased further for up to 6 months. Theses results indicated that anti-angiogenic effect of SRS might play a role in the treatment of CCMs.

Development of Monte Carlo Simulation Code for the Dose Calculation of the Stereotactic Radiosurgery (뇌 정위 방사선수술의 선량 계산을 위한 몬테카를로 시뮬레이션 코드 개발)

  • Kang, Jeongku;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.303-308
    • /
    • 2012
  • The Geant4 based Monte Carlo code for the application of stereotactic radiosurgery was developed. The probability density function and cumulative density function to determine the incident photon energy were calculated from pre-calculated energy spectrum for the linac by multiplying the weighting factors corresponding to the energy bins. The messenger class to transfer the various MLC fields generated by the planning system was used. The rotation matrix of rotateX and rotateY were used for simulating gantry and table rotation respectively. We construct accelerator world and phantom world in the main world coordinate to rotate accelerator and phantom world independently. We used dicomHandler class object to convert from the dicom binary file to the text file which contains the matrix number, pixel size, pixel's HU, bit size, padding value and high bits order. We reconstruct this class object to work fine. We also reconstruct the PrimaryGeneratorAction class to speed up the calculation time. because of the huge calculation time we discard search process of the ThitsMap and used direct access method from the first to the last element to produce the result files.

Clinical Results from Single-Fraction Stereotactic Radiosurgery (SRS) of Brain Arteriovenous Malformation: Single Center Experience (뇌동정맥기형에서 선형가속기를 이용한 방사선 수술 후의 임상적 결과)

  • Lim, Soo-Mee;Lee, Re-Na;Suh, Hyun-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.274-280
    • /
    • 2010
  • The purpose of this study was to analyze the effect of single-fraction stereotactic radiosurgery (SRS) for the treatment of 15 cases of cerebral arteriovenous malformations (AVMs). Between 2002 and 2009, of the 25 patients who had SRS for the treatment of cerebral AVM, 15 patients (6 men, 9 women) taken a digital subtraction angiography (DSA) over 12 months after SRS were included. We retrospectively evaluated the size, location, hemorrhage of nidus, angiographic changes on follow-up on the MR angiography and DSA, and clinical complications during follow-up periods. At a median follow-up of 24 months (range 12-89), complete obliteration of nidus was observed in all patients (100%) while residual draining veins was observed in 3 patients (20%). There was no clinical complication during the follow-up period except seizure in 1 patient. The mean nidus volume was 4.7cc (0.5~11.7 cc, SD 3.7 cc). The locations of nidus were in cerebral hemisphere in 11 patients, cerebellum in 2 patients, basal ganglia in 1 patient, and pons in 1 patient respectively. 9 cases were hemorrhagic, and 6 cases were non-hemorrhagic AVMs. The SRS with LINAC is a safe and effective treatment for cerebral AVMs when the follow up period is over 4 years. However, it is recommended to continue to follow up until the draining vein on arterial phase of follow up DSA disappears completely.

Arrangement and analysis of multi-isocenter based on 3-D spatial unit in stereotactic radiosurgery (정위적 방사선 수술시 3차원적 공간상의 체적소에 기반한 회전중심점들(Multi-isocenter)의 표적내 자동적 배치 및 분석)

  • Choi, Kyoung-Sik;Oh, Seung-Jong;Lee, Jeong-Woo;Suh, Tae-Suk;Choe, Bo-Young;Kim, Moon-Chan
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.75-77
    • /
    • 2004
  • Stereotactic radiosurgery(SRS) is a technique to deliver a high dose to a particular target region and a low dose to the critical organ using only one or a few irradiations while the patient is fixed with a stereotactic frame. The optimized plan is decided by repetitive work to combine the beam parameters and identify prescribed doses level in a tumor, which is usually called a trial and error method. This requires a great deal of time, effort, and experience. Therefore, we developed the automatic arrangement of multi-isocenter within irregularly shaped tumor. At the arbitrary targets, which is this method based on the voxel unit of the space, well satisfies the dose conformity and dose homogeneity to the targets relative to the RTOG radiosurgery plan guidelines

  • PDF