• Title/Summary/Keyword: Stereoscopic Perception

Search Result 66, Processing Time 0.017 seconds

Generation of Stereoscopic Image from 2D Image based on Saliency and Edge Modeling (관심맵과 에지 모델링을 이용한 2D 영상의 3D 변환)

  • Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.368-378
    • /
    • 2015
  • 3D conversion technology has been studied over past decades and integrated to commercial 3D displays and 3DTVs. The 3D conversion plays an important role in the augmented functionality of three-dimensional television (3DTV), because it can easily provide 3D contents. Generally, depth cues extracted from a static image is used for generating a depth map followed by DIBR (Depth Image Based Rendering) rendering for producing a stereoscopic image. However except some particular images, the existence of depth cues is rare so that the consistent quality of a depth map cannot be accordingly guaranteed. Therefore, it is imperative to make a 3D conversion method that produces satisfactory and consistent 3D for diverse video contents. From this viewpoint, this paper proposes a novel method with applicability to general types of image. For this, saliency as well as edge is utilized. To generate a depth map, geometric perspective, affinity model and binomic filter are used. In the experiments, the proposed method was performed on 24 video clips with a variety of contents. From a subjective test for 3D perception and visual fatigue, satisfactory and comfortable viewing of 3D contents was validated.

Stereoscopic 3-D shape constancy (입체시에 근거한 3차원 모양 항상성의 검증)

  • 이형철
    • Korean Journal of Cognitive Science
    • /
    • v.10 no.3
    • /
    • pp.17-28
    • /
    • 1999
  • Systematic distortions in perceived 3-D shape were obtained for elliptical and parabolic stereoscopic surfaces viewed at different distances under full and reduced cue conditions. In both conditions of Experiments 1 and 3, elliptical hemi-cylinders a appeared near veridical at the 45 cm viewing distances and flattened up to 74% of veridical at 135 cm. In Experiment 2, under full cue conditions, parabolic hemi-cylinders a appeared stretched to 118% of veridical at 45 cm, near veridical at 90 cm, and flattened to 85% of veridical at 135 cm. Under reduced cue conditions parabolas appeared flatter overall: veridical curvature was obtained at 45 cm viewing distance with flatness increasing to 68% of veridical at 135 cm. Results support a scaling explanation of perceived 3-D shape from disparity and rule out the alternative hypothesis that disparity curvature, an optical invariant, provides information for the direct perception of 3-D s shape.

  • PDF

Development of Fashion Product and 3D Pattern Textile Design through the Three-Dimensional Expression based on Jogakbo in Chosun Dynasty Period (조선시대 조각보의 입체적 표현을 통한 3D패턴 텍스타일 디자인과 패션상품 개발)

  • Heo, Seungyeun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.2
    • /
    • pp.97-110
    • /
    • 2023
  • The purpose of this study is to develop 3D pattern textile design of traditional Jogakbo motifs and fashion products using it. As a research method, first, through literature review, the three-dimensional representation of geometry on a plane with Jogakbo, design cases were examined. Second, through a survey, the purchase perception and design preference of Jogakbo cultural products was analyzed. Third, based on the results of the survey on color and print, the 3D pattern design for each type of Jogakbo is printed, and then textile fashion cultural products were developed. The results of this study are as follows. First, the reason why the public was not attracted to the purchase of cultural products was disatisfaction with practicality, unsuitable preference, price adequacy, aesthetics, and originality. Therefore, it was analyzed that quality, practicality, price, carry-on storage harmony and manageability, as well as aesthetic design were important factors for consumers. Second, the stereoscopic space on the plane expanded the two-dimensional plane space by forming a cube through the division and dissolution of geometry could be visualized using color expression of cubes of different brightness depending on the direction of light. Third, Jogakbo had eight types consisting of four detailed forms and three arrangement methods. The 3D pattern design could be developed through regular disolution and stereoscopic construction using Jogakbo's representative images for each type. In addition, it was found that it was easy to produce Jogakbo fashion products suitable for modern people through 3D pattern digital textile printing applying traditional colors.

Depth Map Generation Using Infocused and Defocused Images (초점 영상 및 비초점 영상으로부터 깊이맵을 생성하는 방법)

  • Mahmoudpour, Saeed;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.362-371
    • /
    • 2014
  • Blur variation caused by camera de-focusing provides a proper cue for depth estimation. Depth from Defocus (DFD) technique calculates the blur amount present in an image considering that blur amount is directly related to scene depth. Conventional DFD methods use two defocused images that might yield the low quality of an estimated depth map as well as a reconstructed infocused image. To solve this, a new DFD methodology based on infocused and defocused images is proposed in this paper. In the proposed method, the outcome of Subbaro's DFD is combined with a novel edge blur estimation method so that improved blur estimation can be achieved. In addition, a saliency map mitigates the ill-posed problem of blur estimation in the region with low intensity variation. For validating the feasibility of the proposed method, twenty image sets of infocused and defocused images with 2K FHD resolution were acquired from a camera with a focus control in the experiments. 3D stereoscopic image generated by an estimated depth map and an input infocused image could deliver the satisfactory 3D perception in terms of spatial depth perception of scene objects.

Asymmetrical Role of Left and Right Eyes in 3-D Contents Production (3-D 영상 제작 시 고려돼야 할 좌우 눈의 비대칭적인 역할)

  • Lim, Jae-A;Nam, Jong-Ho
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.478-490
    • /
    • 2014
  • In order to make 3-D display technique a better tool to provide viewers with realistic stereoscopic experience, various researches have been done in the many relevant fields. This psychophysical study was designed to investigate whether there was any difference in the perceptual processing between a dominant and non-dominant eye when a 3-D cue was provided exclusively to only one eye. We measured the reaction time for detecting a depth change by providing the viewer's each eyes with differential 3-D stimuli, which have systematical patterns. We obtained that there was a consistent 3-D perceptual performance when the 3-D cue was provided to the viewers' left eye regardless of their eye dominance. The result suggests that it might be a better technique to arrange the camera for left eye to carry 3-D cues to get the viewer's consistent 3-D perception.

Basic Modeling Class Method to Improve the Spatial Perception Ability for Jewelry Design Majors (주얼리 디자인 전공자의 공간지각능력 향상을 위한 기초조형 수업 방법)

  • Chang, Chin-hee
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.249-254
    • /
    • 2021
  • This study is about the class model that can demonstrate the modeling ability using the spatial perception capability on basic modeling required for jewelry design majors and the most important perspective method in jewelry design. The outputs were obtained by presenting the topics for creative activities to students after theoretical explaining how to present a spatial sense and presenting practical classes on basic shapes, stereoscopic shapes and perspective methods. While the existing basic molding classes were only practical classes, this study presented students with a class model that allows them to use creativity, basic perspective, and spatial sense together. And it was found out evaluation method that both students and professors can relate to each other through the intensive education effects and clear evaluation standards. I hope that this paper will continue to study more diverse materials and convergent class models.

Environment Adaptive Sound Localization for Multi-Channel Surround Sound System

  • Lee, Yoon Bae;Mariappan, Vinayagam;Cho, Juphil;Lee, Seon Hee
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.21-25
    • /
    • 2016
  • Recent development in multi-channel surround is emerging in various formats to provide better stereoscopic and sound effects to consumers in recent broadcasting. The ability sound localize the sound sources in space is most considerable design factor on multi-channel surround system for human earing perception model. However, this paper propose the change of the sound localization according to the spacing of the speakers, which is not covered in the existing research focus on sound system design. Presently the sound system uses the position and number of the speakers to localize the sound. In the multi-channel surround environment, the proposed design uses the sound localization is caused by the directional characteristics of the speaker, the distance between the speakers and the distance between the listener and the speaker according to the directivity is required. The proposed design is simulated using virtual measurement with MATLAB simulation environment and performances are measured.

Eye Movement-based Visual Discomfort Analysis from Watching Stereoscopic 3D Contents Regarding Brightness and Viewing Distance (눈 움직임을 이용한 밝기와 시청거리에 따른 3D 콘텐츠 피로도 분석)

  • Kim, Yong-Woo;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1723-1737
    • /
    • 2016
  • When watching 3D contents, people often experience various visual discomforts like tiredness, dryness, headaches, and dizziness. Previous researches on visual discomfort analyzed and concluded vergence-accommodation conflict, viewing distance, and brightness changes to be the causes of visual discomfort. Yet it is necessary to systematically analyze the visual discomfort due to the changes in object, background brightness and viewing distance. In this paper, we produce four videos that have four different background brightness and two different viewing distances to solve analyze the visual discomfort from watching 3D contents. We measure and analyze eye-blink and saccadic movement, saccadic latency, Nearest Point of Convergence (NPC), and participant survey for amore accurate result compared to previous researches. Our results show that the eye-blink rate and saccadic latency increase when the background is bright and viewing distance is close while the saccadic movement decreases in the same environment. However, NPC only changes when the background brightness changes. We confirm that the bright background and near viewing distance create greater visual discomfort and decrease depth perception abilities.

f-MRI with Three-Dimensional Visual Stimulation (삼차원 시각 자극을 이용한 f-MRI 연구)

  • Kim C.Y.;Park H.J.;Oh S.J.;Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • Purpose : Instead of conventional two-dimensional (2-D) visual stimuli, three-dimensional (3-D) visual stimuli with stereoscopic vision were employed for the study of functional Magnetic Resonance Imaging (f-MRI). In this paper f-MRI with 3-D visual stimuli is investigated in comparison with f-MRI with 2-D visual stimuli. Materials and Methods : The anaglyph which generates stereoscopic vision by viewing color coded images with red-blue glasses is used for 3-D visual stimuli. Two-dimensional visual stimuli are also used for comparison. For healthy volunteers, f-MRI experiments were performed with 2-D and 3-D visual stimuli at 3.0 Tesla MRI system. Results : Occipital lobes were activated by the 3-D visual stimuli similarly as in the f-MRI with the conventional 2-D visual stimuli. The activated regions by the 3-D visual stimuli were, however, larger than those by the 2-D visual stimuli by $18\%$. Conclusion : Stereoscopic vision is the basis of the three-dimensional human perception. In this paper 3-D visual stimuli were applied using the anaglyph. Functional MRI was performed with 2-D and 3-D visual stimuli at 3.0 Tesla whole body MRI system. The occipital lobes activated by the 3-D visual stimuli appeared larger than those by the 2-D visual stimuli by about $18\%$. This is due to the more complex character of the 3-D human vision compared to 2-D vision. The f-MRI with 3-D visual stimuli may be useful in various fields using 3-D human vision such as virtual reality, 3-D display, and 3-D multimedia contents.

  • PDF

Geospatial Data Display Technique for Non-Glasses Stereoscopic Monitor (무안경식 입체 모니터를 이용한 지형공간 데이터의 디스플레이 기법)

  • Lee, Seun-Geun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.599-609
    • /
    • 2008
  • Development of computer and electronic technology leads innovative progress in spatial informatics and successful commercialization. Geospatial information technology plays an important role in decision making in various applications. However, information display media are two-dimensional plane that limits visual perception. Understanding human visual processing mechanism to percept stereo vision makes possible to implement three-dimensional stereo image display. This paper proposes on-the-fly stereo image generation methods that are involved with various exterior and camera parameters including exposure station, viewing direction, image size, overlap and focal length. Collinearity equations and parameters related with stereo viewing conditions were solved to generate realisitc stereo imagery. In addition stereo flying simulation scenery was generated with different viewing locations and directions. The stereo viewing is based on the parallax principle of two veiwing locations. This study implemented anaglyphic stereogram, polarization and lenticular stereo display methods. Existing display technology has limitation to provide visual information of three-dimensional and dynamic nature of the real world because the 3D spatial information is projected into 2D plane. Therefore, stereo display methods developed in this study improves geospatial information and applications of GIS by realistic stereo visualization.