• Title/Summary/Keyword: Stereoscopic Images

Search Result 313, Processing Time 0.02 seconds

Real-Time Stereoscopic Visualization of Very Large Volume Data on CAVE (CAVE상에서의 방대한 볼륨 데이타의 실시간 입체 영상 가시화)

  • 임무진;이중연;조민수;이상산;임인성
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.6
    • /
    • pp.679-691
    • /
    • 2002
  • Volume visualization is an important subarea of scientific visualization, and is concerned with techniques that are effectively used in generating meaningful and visual information from abstract and complex volume datasets, defined in three- or higher-dimensional space. It has been increasingly important in various fields including meteorology, medical science, and computational fluid dynamics, and so on. On the other hand, virtual reality is a research field focusing on various techniques that aid gaining experiences in virtual worlds with visual, auditory and tactile senses. In this paper, we have developed a visualization system for CAVE, an immersive 3D virtual environment system, which generates stereoscopic images from huge human volume datasets in real-time using an improved volume visualization technique. In order to complement the 3D texture-mapping based volume rendering methods, that easily slow down as data sizes increase, our system utilizes an image-based rendering technique to guarantee real-time performance. The system has been designed to offer a variety of user interface functionality for effective visualization. In this article, we present detailed description on our real-time stereoscopic visualization system, and show how the Visible Korean Human dataset is effectively visualized on CAVE.

Dual Codec Based Joint Bit Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast (지상파 스테레오스코픽 3DTV 방송을 위한 이종 부호화기 기반 합동 비트율 제어 연구)

  • Chang, Yong-Jun;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.216-225
    • /
    • 2011
  • Following the proliferation of three-dimensional video contents and displays, many terrestrial broadcasting companies have been preparing for stereoscopic 3DTV service. In terrestrial stereoscopic broadcast, it is a difficult task to code and transmit two video sequences while sustaining as high quality as 2DTV broadcast due to the limited bandwidth defined by the existing digital TV standards such as ATSC. Thus, a terrestrial 3DTV broadcasting with a heterogeneous video codec system, where the left image and right images are based on MPEG-2 and H.264/AVC, respectively, is considered in order to achieve both high quality broadcasting service and compatibility for the existing 2DTV viewers. Without significant change in the current terrestrial broadcasting systems, we propose a joint rate control scheme for stereoscopic 3DTV service based on the heterogeneous dual codec systems. The proposed joint rate control scheme applies to the MPEG-2 encoder a quadratic rate-quantization model which is adopted in the H.264/AVC. Then the controller is designed for the sum of the left and right bitstreams to meet the bandwidth requirement of broadcasting standards while the sum of image distortions is minimized by adjusting quantization parameter obtained from the proposed optimization scheme. Besides, we consider a condition on maintaining quality difference between the left and right images around a desired level in the optimization in order to mitigate negative effects on human visual system. Experimental results demonstrate that the proposed bit rate control scheme outperforms the rate control method where each video coding standard uses its own bit rate control algorithm independently in terms of the increase in PSNR by 2.02%, the decrease in the average absolute quality difference by 77.6% and the reduction in the variance of the quality difference by 74.38%.

Disparity-based Depth Scaling of Multiview Images (변이 기반 다시점 영상의 인식 깊이감 조절)

  • Jo, Cheol-Yong;Kim, Man-Bae;Um, Gi-Mun;Hur, Nam-Ho;Kim, Jin-Woong
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.796-803
    • /
    • 2008
  • In this paper, we present a depth scaling method for multiview images that could provide an 3D depth that a user prefers. Unlike previous works that change a camera configuration, the proposed method utilizes depth data in order to carry out the scaling of a depth range requested by users. From multivew images and their corresponding depth data, depth data is transformed into a disparity and the disparity is adjusted in order to control the perceived depth. In particular, our method can deal with multiview images captured by multiple cameras, and can be expanded from stereoscopic to multiview images. Based upon a DSCQS subjective evaluation test, our experimental results tested on an automultiscopic 3D display show that the perceived depth is appropriately scaled according to user's preferred depth.

Image Synthesis and Multiview Image Generation using Control of Layer-based Depth Image (레이어 기반의 깊이영상 조절을 이용한 영상 합성 및 다시점 영상 생성)

  • Seo, Young-Ho;Yang, Jung-Mo;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1704-1713
    • /
    • 2011
  • This paper proposes a method to generate multiview images which use a synthesized image consisting of layered objects. The camera system which consists of a depth camera and a RGB camera is used in capturing objects and extracts 3-dimensional information. Considering the position and distance of the synthesizing image, the objects are synthesized into a layered image. The synthesized image is spaned to multiview images by using multiview generation tools. In this paper, we synthesized two images which consist of objects and human and the multiview images which have 37 view points were generated by using the synthesized images.

The effect of inter-pupilary distance and accommodative convergence on binocular fusion and fixational depth (동공간 거리와 조절성 수렴이 양안 융합과 응시 깊이에 미치는 효과)

  • 반지은;감기택;정찬섭;손정영
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.17-28
    • /
    • 2003
  • In order to provide natural images with a specified depth through three-dimensional display system, the stereo images should be similar to those projected from real environment as much as possible. Even when two persons see an identical scene, the binocular Parallax between two images of an object varies as a function of one's inter-pupilary distance (IPD). In this study, we investigated whether individual differences, such as IPD and accommodative vergence, would affect the perception of three dimensional scene provided by stereo-images. Results showed that a person's IPD is correlated with the limit of screen and binocular parallax for single vision, and affects the perceived depth of an object on fixation. More specifically, with longer IPD the limit of screen and binocular parallax for single vision is decreased, and the perceived depth is reduced. These results suggest that the screen and binocular parallax of an object should be calibrated with regard to users IPD to provide natural stereo-images with a specified depth and to Prevent double vision.

  • PDF

Autostereoscopic Multiview 3D Display System based on Volume Hologram (체적 홀로그램을 이용한 무안경 다안식 3D 디스플레이 시스템)

  • 이승현;이상훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.12
    • /
    • pp.1609-1616
    • /
    • 2001
  • We present an autostereoscopic 3D display system using volume hologram. In this proposed system, the interference pattern of angular multiplexed plane reference and object beams are recorded into a volume hologram, which plays a role of guiding object beams of multi-view images into the desired perspective directions. For reconstruction, object beams containing the desired multi-view image information, which satisfy Bragg matching condition, are illuminated in the time-division multiplexed manner onto the crystal. Then multiple stereoscopic images are projected to the display plane for autostereoscopic 3D viewing. It is possible to make a high resolution multiview 3D display system independent upon the viewpoint.

  • PDF

Implementation of Stereo Image Acquisition System using the Stereo Zoom Lens Module (양안 줌 렌즈 모듈을 이용한 입체영상 획득 장치 구현)

  • Lee Haeng-Su;Kwon Ki-Chul;Kim Jung-Hoi;Kim Nam
    • Journal of Broadcast Engineering
    • /
    • v.10 no.1 s.26
    • /
    • pp.68-76
    • /
    • 2005
  • We propose a new type of stereoscopic camera system with a zoom lens module to overcome the backlash for the stability of picture matching and the difficulty of zoom control. This system is designed to control a pair of zoom lens with a rotation lever. In this paper, we present the structural characteristics of our proposed system, and verify that there are no image mismatching at acquired stereo images and the zoom in$\cdot$out is easy to control. In our experiments, we achieve good results that a convergence control is very simple and distortion of images is decreased.

2D-3D Conversion Method Based on Scene Space Reconstruction (장면의 공간 재구성 기법을 이용한 2D-3D 변환 방법)

  • Kim, Myungha;Hong, Hyunki
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.7
    • /
    • pp.1-9
    • /
    • 2014
  • Previous 2D-3D conversion methods to generate 3D stereo images from 2D sequence consist of labor-intensive procedures in their production pipelines. This paper presents an efficient 2D-3D conversion system based on scene structure reconstruction from image sequence. The proposed system reconstructs a scene space and produces 3D stereo images with texture re-projection. Experimental results show that the proposed method can generate precise 3D contents based on scene structure information. By using the proposed reconstruction tool, the stereographer can collaborate efficiently with workers in production pipeline for 3D contents production.

DEVELOPMENT OF AUGMENTED 3D STEREO URBAN CITY MODELLING SYSTEM BASED ON ANAGLYPH APPROACH

  • Kim, Hak-Hoon;Kim, Seung-Yub;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.98-101
    • /
    • 2006
  • In general, stereo images are widely used to remote sensing or photogrametric applications for the purpose of image understanding and feature extraction or cognition. However, the most cases of these stereo-based application deal with 2-D satellite images or the airborne photos so that its main targets are generation of small-scaled or large-scaled DEM(Digital Elevation Model) or DSM(Digital Surface Model), in the 2.5-D. Contrast to these previous approaches, the scope of this study is to investigate 3-D stereo processing and visualization of true geo-referenced 3-D features based on anaglyph technique, and the aim is at the prototype development for stereo visualization system of complex typed 3-D GIS features. As for complex typed 3-D features, the various kinds of urban landscape components are taken into account with their geometric characteristics and attributes. The main functions in this prototype are composed of 3-D feature authoring and modeling along with database schema, stereo matching, and volumetric visualization. Using these functions, several technical aspects for migration into actual 3-D GIS application are provided with experiment results. It is concluded that this result will contribute to more specialized and realistic applications by linking 3-D graphics with geo-spatial information.

  • PDF

Stereo Image Coding Using Zerotree (제로트리 기법을 이용한 스테레오 영상 부호화)

  • Bae, Jin-Woo;Shin, Choel;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2092-2099
    • /
    • 2001
  • In the three-dimensional image system using stereoscopic images, efficient coding schemes which can get rid of redundancy between the left and right images are usually used. In this paper, we propose an efficient coding method by using relationship between a reference image and residual image. In the proposed algorithm, zero-tree method which guaranty a good quality in low bit rate is used for encoding the residual image. Zero-tree algorithm gives good coding performance, but it has computational complexity so that we used ADLS method to reduce time for the disparity estimation. Using the wavelet based zero-tree method, it is shown that high quality of image in the limited band-width can be preserved through computer simulation.

  • PDF