• Title/Summary/Keyword: Stereoscopic Images

Search Result 313, Processing Time 0.025 seconds

Distortion Analysis in Stereoscopic Images (스테레오 영상에서의 상의 왜곡 해석)

  • ;Y. Gruts
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.198-199
    • /
    • 2001
  • 본 논문은 스테레오 영상의 왜곡 현상을 분석하는 수학적인 해석 방법을 제안하였다. 스테레오 카메라의 중심과 투사기의 중심을 연결하는 직선이 스크린이 가지는 평면의 중심을 지나는 법선 벡터가 되고, 스테레오 카메라와 투사기의 두 렌즈의 광축이 스크린의 중심에 놓일 경우에 사진을 찍는 조건, 투영 조건 및 관측 조건에 해당하는 해석해를 유도하였다. 위 세 가지 조건에 따라 영상의 왜곡 정도가 바뀌게 되는데 왜곡을 최소한으로 만들 수 있는 조건식을 유도하였다.

  • PDF

Monocular 3D Vision Unit for Correct Depth Perception by Accommodation

  • Hosomi, Takashi;Sakamoto, Kunio;Nomura, Shusaku;Hirotomi, Tetsuya;Shiwaku, Kuninori;Hirakawa, Masahito
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1334-1337
    • /
    • 2009
  • The human vision system has visual functions for viewing 3D images with a correct depth. These functions are called accommodation, vergence and binocular stereopsis. Most 3D display system utilizes binocular stereopsis. The authors have developed a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth.

  • PDF

In Watching 3D Stereoscopic Display Using the Binocular Disparity, the Effect of Pupillary Distance of Adults and Children on the Perception of 3D Image (양안시차를 이용한 3D 입체영상 장치의 시청에 있어 성인 및 아동의 동공간거리가 미치는 영향)

  • Kang, Seok Hyon;Hong, HyungKi
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.299-305
    • /
    • 2011
  • Purpose: In watching 3D stereoscopic display using the binocular disparity, effect of difference of the pupillary distance between the adults and children on the perception of depth were investigated. Methods: The average PD of children was determined from the PD measurements of children of the elementary school of 2nd and 3rd grade in Seoul. The location of crossing visual axes were derived from the relation of the binocular disparity and the PD for the adults and children. Results: The average PD of the children was measured to be 57.3 mm which was smaller than the average PD of the adults that was known to be about 65 mm. As the binocular disparity increases to the positive direction, the crossing location steeply moves farther behind the screen. On the other hand, when the binocular disparity increases to the negative direction, the crossing location gradually moves toward the viewer. For the same amount of the binocular disparity, the crossing locations were derived to be larger for the children than the adults due to the difference of the PD. Therefore, children will perceive larger depth than the adults. Conclusions: Small PD of the viewer causes the larger amount of the depth perception. In producing the stereoscopic images, the average PD of children as well as adults need to be considered.

A New Watermarking Algorithm for Copyright Protection of Stereoscopic Image (스테레오 영상의 소유권 보호를 위한 워터마킹 기법)

  • Seo, Young-Ho;Koo, Ja-Myung;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1663-1674
    • /
    • 2012
  • In this paper, we propose a new watermarking technique for copyright protection of stereo image. The proposed technique embeds watermark to the region which corresponds to occlusion of the disparity map to be extracted by the proposed stereo matching and the frequency coefficient with the appropriate value. We use discrete wavelet transform for frequency transform tool. The proposed algorithm consists of stereo matching, watermark rearrange, mark space selection, and watermark embedding/extracting. We tested the experiment about 4 stereo images which are from Middlebury site. We embedded the watermark to 4 stereo images and extracted it from the images after attacks. We also visually analyzed the watermark embedding images in 3D TV environment.

A New Camera System Implementation for Realistic Media-based Contents (실감미디어 기반의 콘텐츠를 위한 카메라 시스템의 구현)

  • Seo, Young Ho;Lee, Yoon Hyuk;Koo, Ja Myung;Kim, Woo Youl;Kim, Bo Ra;Kim, Moon Seok;Kim, Dong Wook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.99-109
    • /
    • 2013
  • In this paper, we propose a new system which captures real depth and color information from natural scene and implemented it. Based on it, we produced stereo and multiview images for 3-dimensional stereoscopic contents and introduced the production of a digital hologram which is considered to the next-generation image. The system consists of both a camera system for capturing images which correspond to RGB and depth images and softwares (SWs) for various image processings which consist of pre-processing such as rectification and calibration, 3D warping, and computer generated hologram (CGH). The camera system use a vertical rig with two paris of depth and RGB camera and a specially manufactured cold mirror which has the different transmittance according to wavelength for obtaining images with the same view point. The wavelength of our mirror is about 850nm. Each algorithm was implemented using C and C++ and the implemented system can be operated in real-time.

Research for development of small format multi -spectral aerial photographing systems (PKNU 3) (소형 다중분광 항공촬영 시스템(PKNU 3호) 개발에 관한 연구)

  • 이은경;최철웅;서영찬;조남춘
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.143-152
    • /
    • 2004
  • Researchers seeking geological and environmental information, depend on remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, adverse weather conditions as well as equipment expense limit the ability to collect data anywhere and anytime. To allow for better flexibility in geological and environmental data collection, we have developed a compact, multi-spectral automatic Aerial Photographic system (PKNU2). This system's Multi-spectral camera can record visible (RGB) and infrared (NIR) band (3032*2008 Pixels) images Visible and infrared band images were obtained from each camera respectively and produced color-infrared composite images to be analyzed for the purpose of the environmental monitoring. However this did not provide quality data. Furthermore, it has the disadvantage of having the stereoscopic overlap area being 60% unsatisfied due to the 12 seconds of storage time of each data The PKNU2 system in contrast, photographed photos of great capacity Thus, with such results, we have been proceeding to develop the advanced PKNU2 (PKNU3) system that consists of a color-infrared spectral camera that can photograph in the visible and near-infrared bands simultaneously using a single sensor, a thermal infrared camera, two 40G computers to store images, and an MPEG board that can compress and transfer data to the computer in real time as well as be able to be mounted onto a helicopter platform.

  • PDF

Design and Implementation of a Stereoscopic Image Control System based on User Hand Gesture Recognition (사용자 손 제스처 인식 기반 입체 영상 제어 시스템 설계 및 구현)

  • Song, Bok Deuk;Lee, Seung-Hwan;Choi, HongKyw;Kim, Sung-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.396-402
    • /
    • 2022
  • User interactions are being developed in various forms, and in particular, interactions using human gestures are being actively studied. Among them, hand gesture recognition is used as a human interface in the field of realistic media based on the 3D Hand Model. The use of interfaces based on hand gesture recognition helps users access media media more easily and conveniently. User interaction using hand gesture recognition should be able to view images by applying fast and accurate hand gesture recognition technology without restrictions on the computer environment. This paper developed a fast and accurate user hand gesture recognition algorithm using the open source media pipe framework and machine learning's k-NN (K-Nearest Neighbor). In addition, in order to minimize the restriction of the computer environment, a stereoscopic image control system based on user hand gesture recognition was designed and implemented using a web service environment capable of Internet service and a docker container, a virtual environment.

VR, AR Simulation and 3D Printing for Shoulder and Elbow Practice (VR, AR 시뮬레이션 및 3D Printing을 활용한 어깨와 팔꿈치 수술실습)

  • Lim, Wonbong;Moon, Young Lae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.175-179
    • /
    • 2016
  • Recent advances in technology of medical image have made surgical simulation that is helpful to diagnosis, operation plan, or education. Improving and enhancing the medical imaging have led to the availability of high definition images and three-dimensional (3D) visualization, it allows a better understanding in the surgical and educational field. The Real human field of view is stereoscopic. Therefore, with just 2D images, stereoscopic reconstruction process through the surgeon's head, is necessary. To reduce these process, 3D images have been used. 3D images enhanced 3D visualization, it provides significantly shorter time for surgeon for judgment in complex situations. Based on 3D image data set, virtual medical simulations, such as virtual endoscopy, surgical planning, and real-time interaction, have become possible. This article describes principles and recent applications of newer imaging techniques and special attention is directed towards medical 3D reconstruction techniques. Recent advances in technology of CT, MR and other imaging modalities has resulted in exciting new solutions and possibilities of shoulder imaging. Especially, three-dimensional (3D) images derived from medical devices provides advanced information. This presentation describes the principles and potential applications of 3D imaging techniques, simulation and printing in shoulder and elbow practice.

Multi-view Image Generation from Stereoscopic Image Features and the Occlusion Region Extraction (가려짐 영역 검출 및 스테레오 영상 내의 특징들을 이용한 다시점 영상 생성)

  • Lee, Wang-Ro;Ko, Min-Soo;Um, Gi-Mun;Cheong, Won-Sik;Hur, Nam-Ho;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.838-850
    • /
    • 2012
  • In this paper, we propose a novel algorithm that generates multi-view images by using various image features obtained from the given stereoscopic images. In the proposed algorithm, we first create an intensity gradient saliency map from the given stereo images. And then we calculate a block-based optical flow that represents the relative movement(disparity) of each block with certain size between left and right images. And we also obtain the disparities of feature points that are extracted by SIFT(scale-invariant We then create a disparity saliency map by combining these extracted disparity features. Disparity saliency map is refined through the occlusion detection and removal of false disparities. Thirdly, we extract straight line segments in order to minimize the distortion of straight lines during the image warping. Finally, we generate multi-view images by grid mesh-based image warping algorithm. Extracted image features are used as constraints during grid mesh-based image warping. The experimental results show that the proposed algorithm performs better than the conventional DIBR algorithm in terms of visual quality.

Enhanced Image Mapping Method for Computer-Generated Integral Imaging System (집적 영상 시스템을 위한 향상된 이미지 매핑 방법)

  • Lee Bin-Na-Ra;Cho Yong-Joo;Park Kyoung-Shin;Min Sung-Wook
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.295-300
    • /
    • 2006
  • The integral imaging system is an auto-stereoscopic display that allows users to see 3D images without wearing special glasses. In the integral imaging system, the 3D object information is taken from several view points and stored as elemental images. Then, users can see a 3D reconstructed image by the elemental images displayed through a lens array. The elemental images can be created by computer graphics, which is referred to the computer-generated integral imaging. The process of creating the elemental images is called image mapping. There are some image mapping methods proposed in the past, such as PRR(Point Retracing Rendering), MVR(Multi-Viewpoint Rendering) and PGR(Parallel Group Rendering). However, they have problems with heavy rendering computations or performance barrier as the number of elemental lenses in the lens array increases. Thus, it is difficult to use them in real-time graphics applications, such as virtual reality or real-time, interactive games. In this paper, we propose a new image mapping method named VVR(Viewpoint Vector Rendering) that improves real-time rendering performance. This paper describes the concept of VVR first and the performance comparison of image mapping process with previous methods. Then, it discusses possible directions for the future improvements.