• Title/Summary/Keyword: Stereo Vision System

Search Result 304, Processing Time 0.023 seconds

Segmentation of Pointed Objects for Service Robots (서비스 로봇을 위한 지시 물체 분할 방법)

  • Kim, Hyung-O;Kim, Soo-Hwan;Kim, Dong-Hwan;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • This paper describes how a person extracts a unknown object with pointing gesture while interacting with a robot. Using a stereo vision sensor, our proposed method consists of two stages: the detection of the operators' face, the estimation of the pointing direction, and the extraction of the pointed object. The operator's face is recognized by using the Haar-like features. And then we estimate the 3D pointing direction from the shoulder-to-hand line. Finally, we segment an unknown object from 3D point clouds in estimated region of interest. On the basis of this proposed method, we implemented an object registration system with our mobile robot and obtained reliable experimental results.

  • PDF

3-D Positioning Using Stereo Vision and Guide-Mark Pattern For A Quadruped Walking Robot (스테레오 시각 정보를 이용한 4각보행 로보트의 3차원 위치 및 자세 검출)

  • ;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1188-1200
    • /
    • 1990
  • In this paper, the 3-D positioning problem for a quadruped walking robot is investigated. In order to determine the robot's exterior position and orentation in a worls coordinate system, a stereo 3-D positioning algorithm is proposed. The proposed algorithm uses a Guide-Mark Pattern (GMP) specialy designed for fast and reliable extraction of 3-D robot position information from the uncontrolled working environment. Some experimental results along with error analysis and several means of reducing the effects of vision processing error in the proposed algorithm are disscussed.

  • PDF

In situ Measurement of Lateral Side-Necking of a Fracture Specimen Using a Stereo Vision and Digital Image Correlation (Stereo Vision과 디지털 화상상관법을 이용한 파괴시험편의 측면 함몰의 현장 측정)

  • Lee Jeong-Hyun;Kang Ki-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.154-161
    • /
    • 2004
  • An experimental method for measuring side-necking deformation near a crack-tip is described. It is based on Stereoscopic Digital Speckle Photography and Digital Image Correlation, and it is simple and robust to mechanical vibration inherent to a hydraulic material test system. The validity and accuracy are evaluated through a calibration fur rigid body translation. A case study has been performed for a CT specimen made of a ductile steel and the three dimensional profiles of the side-necked region are presented as the load increases. Also, the details of the procedure and the surface treatment are discussed.

3D Coordinates Transformation in Orthogonal Stereo Vision (직교식 스테레오 비젼 시스템에서의 3차원 좌표 변환)

  • Yoon, Hee-Joo;Cha, Sun-Hee;Cha, Eui-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.855-858
    • /
    • 2005
  • 본 시스템은 어항 속의 물고기 움직임을 추적하기 위해 직교식 스테레오 비젼 시스템(Othogonal Stereo Vision System)으로부터 동시에 독립된 영상을 획득하고 획득된 영상을 처리하여 좌표를 얻어내고 3차원 좌표로 생성해내는 시스템이다. 제안하는 방법은 크게 두 대의 카메라로부터 동시에 영상을 획득하는 방법과 획득된 영상에 대한 처리 및 물체 위치 검출, 그리고 3차원 좌표 생성으로 구성된다. Frame Grabber를 사용하여 초당 8-Frame의 두 개의 영상(정면영상, 상면영상)을 획득하며, 실시간으로 갱신하는 배경영상과의 차영상을 통하여 이동객체를 추출하고, Labeling을 이용하여 Clustering한 후, Cluster의 중심좌표를 검출한다. 검출된 각각의 좌표를 직선방정식을 이용하여 3차원 좌표보정을 수행하여 이동객체의 좌표를 생성한다.

  • PDF

A Bimodal Approach for Land Vehicle Localization

  • Kim, Seong-Baek;Choi, Kyung-Ho;Lee, Seung-Yong;Choi, Ji-Hoon;Hwang, Tae-Hyun;Jang, Byung-Tae;Lee, Jong-Hun
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.497-500
    • /
    • 2004
  • In this paper, we present a novel idea to integrate a low cost inertial measurement unit (IMU) and Global Positioning System (GPS) for land vehicle localization. By taking advantage of positioning data calculated from an image based on photogrammetry and stereo-vision techniques, errors caused by a GPS outage for land vehicle localization were significantly reduced in the proposed bimodal approach. More specifically, positioning data from the photogrammetric approach are fed back into the Kalman filter to reduce and compensate for IMU errors and improve the performance. Experimental results are presented to show the robustness of the proposed method, which can be used to reduce positioning errors caused by a low cost IMU when a GPS signal is not available in urban areas.

  • PDF

A Study of the Use of step by preprocessing and Graph Cut for the exact depth map (깊이맵 향상을 위한 전처리 과정과 그래프 컷에 관한 연구)

  • Kim, Young-Seop;Song, Eung-Yeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2011
  • The stereoscopic vision system is the algorithm to obtain the depth of target object of stereo vision image. This paper presents an efficient disparity matching method using blue edge filter and graph cut algorithm. We do recommend the use of the simple sobel edge operator. The application of B band sobel edge operator over image demonstrates result with somewhat noisy (distinct border). The basic technique is to construct a specialized graph for the energy function to be minimized such that the minimum cut on the graph also minimizes the energy (either globally or locally). This method has the advantage of saving a lot of data. We propose a preprocessing effective stereo matching method based on sobel algorithm which uses blue edge information and the graph cut, we could obtain effective depth map.

A Study of the Use of Step by Preprocessing and Dynamic Programming for the Exact Depth Map (정확한 깊이 맵을 위한 전처리 과정과 다이나믹 프로그래밍에 관한 연구)

  • Kim, Young-Seop;Song, Eung-Yeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • The stereoscopic vision system is the algorithm to obtain the depth of target object of stereo vision image. This paper presents an efficient disparity matching method using nagao filter, octree color quantization and dynamic programming algorithm. we describe methods for performing color quantization on full color RGB images, using an octree data structure. This method has the advantage of saving a lot of data. We propose a preprocessing stereo matching method based on Nagao-filter algorithm using color information. using the nagao filter, we could obtain effective depth map and using the octree color quantization, we could reduce the time of computation.

A study of using the magnifying lens to detect the detail 3D data (정밀한 3차원 데이터를 얻기 위한 확대경 사용에 관한 연구)

  • Cha, Kuk-Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.41-47
    • /
    • 2006
  • The range-based method is easy to get the 3D data in detail, but the image-based is not. In this paper. employing the magnifying lens. the new approach to get the 3D data in detail is suggested. The magnifying lens amplifies the disparity in stereo vision system and the amplification of disparity is to increase the resolution of the depth. We mathematically and experimentally verifies the fact to amplify the disparity and suggests the method to improve the original 3D data with the detail 3D data.

  • PDF

Distance Estimation Method using Enhanced Adaptive Fuzzy Strong Tracking Kalman Filter Based on Stereo Vision (스테레오 비전에서 향상된 적응형 퍼지 칼만 필터를 이용한 거리 추정 기법)

  • Lim, Young-Chul;Lee, Chung-Hee;Kwon, Soon;Lee, Jong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.108-116
    • /
    • 2008
  • In this paper, we propose an algorithm that can estimate the distance using disparity based on stereo vision system, even though the obstacle is located in long ranges as well as short ranges. We use sub-pixel interpolation to minimize quantization errors which deteriorate the distance accuracy when calculating the distance with integer disparity, and also we use enhanced adaptive fuzzy strong tracking Kalman filter(EAFSTKF) to improve the distance accuracy and track the path optimally. The proposed method can solve the divergence problem caused by nonlinear dynamics such as various vehicle movements in the conventional Kalman filter(CKF), and also enhance the distance accuracy and reliability. Our simulation results show that the performance of our method improves by about 13.5% compared to other methods in point of root mean square error rate(RMSER).

Accurate Pose Measurement of Label-attached Small Objects Using a 3D Vision Technique (3차원 비전 기술을 이용한 라벨부착 소형 물체의 정밀 자세 측정)

  • Kim, Eung-su;Kim, Kye-Kyung;Wijenayake, Udaya;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.839-846
    • /
    • 2016
  • Bin picking is a task of picking a small object from a bin. For accurate bin picking, the 3D pose information, position, and orientation of a small object is required because the object is mixed with other objects of the same type in the bin. Using this 3D pose information, a robotic gripper can pick an object using exact distance and orientation measurements. In this paper, we propose a 3D vision technique for accurate measurement of 3D position and orientation of small objects, on which a paper label is stuck to the surface. We use a maximally stable extremal regions (MSERs) algorithm to detect the label areas in a left bin image acquired from a stereo camera. In each label area, image features are detected and their correlation with a right image is determined by a stereo vision technique. Then, the 3D position and orientation of the objects are measured accurately using a transformation from the camera coordinate system to the new label coordinate system. For stable measurement during a bin picking task, the pose information is filtered by averaging at fixed time intervals. Our experimental results indicate that the proposed technique yields pose accuracy between 0.4~0.5mm in positional measurements and $0.2-0.6^{\circ}$ in angle measurements.