• 제목/요약/키워드: Stereo Camera

검색결과 609건 처리시간 0.03초

스테레오 카메라의 미소 병진운동을 이용한 3차원 거리추출 알고리즘 (3D Range Finding Algorithm Using Small Translational Movement of Stereo Camera)

  • 박광일;이재웅;오준호
    • 한국정밀공학회지
    • /
    • 제12권8호
    • /
    • pp.156-167
    • /
    • 1995
  • In this paper, we propose a 3-D range finding method for situation that stereo camera has small translational motion. Binocular stereo generally tends to produce stereo correspondence errors and needs huge amount of computation. The former drawback is because the additional constraints to regularize the correspondence problem are not always true for every scene. The latter drawback is because they use either correlation or optimization to find correct disparity. We present a method which overcomes these drawbacks by moving the stereo camera actively. The method utilized a motion parallax acquired by monocular motion stereo to restrict the search range of binocular disparity. Using only the uniqueness of disparity makes it possible to find reliable binocular disparity. Experimental results with real scene are presented to demonstrate the effectiveness of this method.

  • PDF

근거리 사진측량을 위한 스테레오 카메라의 안정성 분석 (Stability Analysis of a Stereo-Camera for Close-range Photogrammetry)

  • 김의명;최인하
    • 한국측량학회지
    • /
    • 제39권3호
    • /
    • pp.123-132
    • /
    • 2021
  • 근거리 사진측량에서 스테레오 카메라를 이용하여 3차원 위치를 결정하기 위해 카메라의 내부표정요소뿐만 아니라 카메라 간의 상호표정요소를 결정하는 카메라 캘리브레이션이 선행되어야 한다. 카메라 캘리브레이션을 수행하고 나서 시간이 흐르면 비측량용 카메라의 경우 내부적인 불안정성이나 외부적인 요인에 의해 내부표정요소와 상호표정요소가 변할 수 있다. 본 연구에서는 스테레오 카메라 안정성을 평가하기 위해 두 대의 단일 카메라와 스테레오 카메라의 안정성을 분석뿐만 아니라 검사점을 이용하여 3차원 위치 정확도를 평가하였다. 4개월간 3회의 카메라 캘리브레이션을 수행한 실험을 통해 단일 카메라의 안정성을 평가한 결과 평균제곱근오차는 ±0.001mm로 나타났으며, 스테레오 카메라의 평균제곱근오차는 ±0.012mm ~ ±0.025mm로 나타났다. 또한, 검사점을 이용한 거리정확도를 평가한 결과 ±1mm로 나타나 다시기에 걸쳐 추정한 스테레오 카메라의 내부표정요소와 상호표정요소는 안정적인 것으로 판단되었다.

Stereo Calibration Using Support Vector Machine

  • Kim, Se-Hoon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.250-255
    • /
    • 2003
  • The position of a 3-dimensional(3D) point can be measured by using calibrated stereo camera. To obtain more accurate measurement ,more accurate camera calibration is required. There are many existing methods to calibrate camera. The simple linear methods are usually not accurate due to nonlinear lens distortion. The nonlinear methods are accurate more than linear method, but it increase computational cost and good initial guess is needed. The multi step methods need to know some camera parameters of used camera. Recent years, these explicit model based camera calibration work with the development of more precise camera models involving correction of lens distortion. But these explicit model based camera calibration have disadvantages. So implicit camera calibration methods have been derived. One of the popular implicit camera calibration method is to use neural network. In this paper, we propose implicit stereo camera calibration method for 3D reconstruction using support vector machine. SVM can learn the relationship between 3D coordinate and image coordinate, and it shows the robust property with the presence of noise and lens distortion, results of simulation are shown in section 4.

  • PDF

해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용 (Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation)

  • 김미영;최장운;이현;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF

철도승강장 모니터링을 위한 스테레오카메라 개발연구 (Development of Stereo Camera for Railway Platform Monitoring)

  • 원종운;오세찬;김길동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.293-293
    • /
    • 2010
  • In this paper, we propose a stereo vision based monitoring concept for passenger's safety on railroad platform. In general, basic concept of stereo image processing technique uses the correlations between left and right images, and extracts additional distance information. It provides easy removal of ambient illumination changes, which has been difficult to achieve with conventional 2D based image processing technique. In the paper, we present developed stereo camera and stereo vision based detection algorithm in order to monitor possible accidents at platform area, and verified the detection performance of proposed system with experimental results.

  • PDF

A Novel Horizontal Disparity Estimation Algorithm Using Stereoscopic Camera Rig

  • Ramesh, Rohit;Shin, Heung-Sub;Jeong, Shin-Il;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • 제9권1호
    • /
    • pp.83-88
    • /
    • 2011
  • Abstract. Image segmentation is always a challenging task in computer vision as well as in pattern recognition. Nowadays, this method has great importance in the field of stereo vision. The disparity information extracting from the binocular image pairs has essential relevance in the fields like Stereoscopic (3D) Imaging Systems, Virtual Reality and 3D Graphics. The term 'disparity' represents the horizontal shift between left camera image and right camera image. Till now, many methods are proposed to visualize or estimate the disparity. In this paper, we present a new technique to visualize the horizontal disparity between two stereo images based on image segmentation method. The process of comparing left camera image with right camera image is popularly known as 'Stereo-Matching'. This method is used in the field of stereo vision for many years and it has large contribution in generating depth and disparity maps. Correlation based stereo-matching are used most of the times to visualize the disparity. Although, for few stereo image pairs it is easy to estimate the horizontal disparity but in case of some other stereo images it becomes quite difficult to distinguish the disparity. Therefore, in order to visualize the horizontal disparity between any stereo image pairs in more robust way, a novel stereo-matching algorithm is proposed which is named as "Quadtree Segmentation of Pixels Disparity Estimation (QSPDE)".

Trinocular Vision System을 이용한 물체 자세정보 인식 향상방안 (A Study on the Improvement of Pose Information of Objects by Using Trinocular Vision System)

  • 김종형;장경재;권혁동
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.223-229
    • /
    • 2017
  • Recently, robotic bin-picking tasks have drawn considerable attention, because flexibility is required in robotic assembly tasks. Generally, stereo camera systems have been used widely for robotic bin-picking, but these have two limitations: First, computational burden for solving correspondence problem on stereo images increases calculation time. Second, errors in image processing and camera calibration reduce accuracy. Moreover, the errors in robot kinematic parameters directly affect robot gripping. In this paper, we propose a method of correcting the bin-picking error by using trinocular vision system which consists of two stereo cameras andone hand-eye camera. First, the two stereo cameras, with wide viewing angle, measure object's pose roughly. Then, the 3rd hand-eye camera approaches the object, and corrects the previous measurement of the stereo camera system. Experimental results show usefulness of the proposed method.

Effective Route Decision of an Automatic Moving Robot(AMR) using a 2D Spatial Map of the Stereo Camera System

  • Lee, Jae-Soo;Han, Kwang-Sik;Ko, Jung-Hwan
    • 조명전기설비학회논문지
    • /
    • 제20권9호
    • /
    • pp.45-53
    • /
    • 2006
  • This paper proposes a method for an effective intelligent route decision for automatic moving robots(AMR) using a 2D spatial map of a stereo camera system. In this method, information about depth and disparity map are detected in the inputting images of a parallel stereo camera. The distance between the automatic moving robot and the obstacle is detected, and a 2D spatial map is obtained from the location coordinates. Then the relative distances between the obstacle and other objects are deduced. The robot move automatically by effective and intelligent route decision using the obtained 2D spatial map. From experiments on robot driving with 240 frames of stereo images, it was found that the error ratio of the calculated distance to the measured distance between objects was very low, 1.52[%] on average.

자율 이동로봇의 경로추정을 위한 적응적 공간좌표 검출 기법 (Adaptive Spatial Coordinates Detection Scheme for Path-Planning of Autonomous Mobile Robot)

  • 이정석;고정환
    • 전기학회논문지P
    • /
    • 제55권2호
    • /
    • pp.103-109
    • /
    • 2006
  • In this paper, the detection scheme of the spatial coordinates based on stereo camera for a intelligent path planning of an automatic mobile robot is proposed. In the proposed system, face area of a moving person is detected from a left image among the stereo image pairs by using the YCbCr color model and its center coordinates are computed by using the centroid method and then using these data, the stereo camera embedded on the mobile robot can be controlled for tracking the moving target in real-time. Moreover, using the disparity mad obtained from the left and right images captured by the tracking-controlled stereo camera system and the perspective transformation between a 3-D scene. and an image plane, depth information can be detected. Finally, based-on the analysis of these calculated coordinates, a mobile robot system is derived as a intelligent path planning and a estimation.

단일 카메라 캘리브레이션과 스테레오 카메라의 캘리브레이션의 비교 (Calibration Comparison of Single Camera and Stereo Camera)

  • 김의명;홍송표
    • 한국측량학회지
    • /
    • 제36권4호
    • /
    • pp.295-303
    • /
    • 2018
  • 스테레오 카메라 시스템은 물리적으로 고정된 기선길이를 가지고 있어 축척이 일정하나 스테레오 영상에서 매번 특징점 매칭을 통해서 상호표정요소를 결정할 경우 축척이 고정 되어 있지 않아 실제 3차원 좌표를 측정하기 어려운 문제점이 있다. 따라서 본 연구에서는 수정된 공선조건식을 이용하여 좌우측 카메라의 내부적인 특성 및 카메라간의 관계를 동시에 결정하는 스테레오 카메라 캘리브레이션을 수행하고 이를 단일 카메라 캘리브레이션과 비교하는 것을 목적으로 하였다. 실험을 통해 근거리에 촬영한 영상에서 결정한 3차원 거리를 비교하였을 경우 단일 캘리브레이션의 결과에서는 ${\pm}0.014m$의 평균제곱근오차가 발생한 반면 스테레오 카메라의 경우에는 오차가 거의 발생하지 않았기 때문에 스테레오 카메라 캘리브레이션의 3차원 거리의 정확도가 우수하게 나타났다. 에피폴라 영상의 종시차에 대한 비교에서는 스테레오 카메라를 이용한 경우가 단일 카메라의 경우 보다 평균제곱근오차가 최대 0.3 픽셀 정도의 차이를 보였으나 그 영향은 크지 않은 것으로 나타났다.