• Title/Summary/Keyword: Stepping motor control

Search Result 180, Processing Time 0.026 seconds

Development of a Prototype of Guidance System for Rice-transplanter

  • Zhang, Fang-Ming;Shin, Beom-Soo;Feng, Xi-Ming;Li, Yuan;Shou, Ru-Jiang
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.255-263
    • /
    • 2013
  • Purpose: It is not easy to drive a rice-transplanter avoiding underlapped or overlapped transplanting in paddy fields. An automated guidance system for the riding-type rice-transplanter would be necessary to operate the rice-transplanter autonomously or to assist the beginning drivers as a driving aid. Methods: A prototype of guidance system was composed of embedded computers, RTK-GPS, and a power-steering mechanism. Two Kalman filters were adopted to overcome sparse positioning data (1 Hz) from the RTK-GPS. A global Kalman filter estimated the posture of rice-transplanter every one second, and a local Kalman filter calculated the posture from every new estimation of the global Kalman filter with an interval of 200 ms. A PID controller was applied to the row-following mode control. A control method of U-turning mode was developed as well. A stepping motor with a reduction gear set was used to rotate the shaft of steering wheel. Results: Test trials for U-turning and row-following modes were done in a paddy field after some parameters have been tuned at the ground speed range of 0.3 ~ 1.2 m/s. The minimum RMS error of offset was 3.13 cm at the ground speed of 0.3 m/s while the maximum RMS error was 13.01 cm at 1.2 m/s. The offset RMS error tended to increase as the ground speed increased. The target point distance, LT also affected the system performance and PID controller parameters should be adjusted on different ground speeds. Conclusions: A target angle-based PID controller plus stationary steering angle controller made it possible for the rice-transplanter to steer autonomously by following a reference line accurately and even on U-turning mode. However, as condition in paddy fields is very complicated, the system should control the ground speed that prevents it from deviating too much due to ditch and slope.

Design of 3D Printer Based on SLA Using LSU and Test of Scanning Mechanism (LSU를 이용한 SLA 방식의 3D프린터 설계 및 스캐닝 기구부 동작 테스트)

  • Jang, Min;Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1225-1230
    • /
    • 2017
  • 3D printers have been growing mainly in industrial use, but the recent growth of the personal 3D printer market advanced through economic effects and cost reduction due to technological development. However, current 3D personal printers are very low in customer satisfaction on the limitations of molding speed, size, and precision. In this paper, we propose SLA 3D printer using LSU to overcome the technical limitation of personal 3D printer. In order to verify the operation of the scanning mechanism which is responsible for core functions, the movement of molding board using stepping motor and laser output test was conducted. These tests ensure that the laser was operating and control well was confirmed that a certain point is output to the X-axis by means of a laser module and a polygon mirror. 3D printers which are proposed to improve the accuracy and manufacturing speed is expected to replace the traditional low-budget 3D printer.

Investigation of Micro-vibration Isolation Performance of SMA Mesh Washer Isolator for Vibration Isolation of X-band Antenna (SMA 메쉬 와셔 진동 절연기를 적용한 X-band 안테나의 미소진동 절연성능 검토)

  • Jeon, Su-Hyeon;Kwon, Sung-Choel;Kim, Dae-Kwan;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.988-995
    • /
    • 2014
  • Two axis gimbal type X-band antenna system has been widely used to effectively transmit the real time image data from the observation satellite to the ground station. The micro-vibration generated by stepping motor actuation and imperfect intermeshed gear configuration of the antenna is one of the sources to degrade the image quality. To guarantee a high quality image of high resolution observation satellite, micro-vibration isolation of X-band antenna is required. In this paper, the X-band antenna vibration isolation system using pseudoelastic SMA(Shape Memory Alloy) mesh washer has been newly suggested. The basic characteristics of the SMA mesh washer isolator proposed in this study has been measured through static load tests and its effectiveness has been demonstrated by the micro-vibration isolation test of the X-band antenna.

X-ray Induced Electron emission Spectroscopy

  • 송세안;이재철;최진학;김준홍;이재학;임창빈
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.191-191
    • /
    • 1999
  • Extended X-ray Absorption Fine Structure (EXAFS)는 일반적으로 널리 사용하는 X선 회절분광기로 분석하기 힘든 chemical 또는 biological system의 structural analyses에 매우 유용한 분석방법이다. 특히 세라믹이나 유전체 비정질 재료의 미세 원자 구조에 관한 정보를 얻는데는 가장 강력한 분석방법중의 하나로 알려져 있다. 현재까지 대부분의 EXAFS 실험은 방사광 가속기를 이용하여 수행하였다. 그런데 신제품 개발의 순환주기가 급속하게 단축되는 현실적인 문제에 부응하기 위하여 실험실에서 EXAFS 실험을 수행할 수 있는 system을 개발하게 되었다. 개발한 XIEES 장비는 rotating anode 형의 18kW X-ray source, Optical system, Detection system, Stepping motor control system, vacuum system, Utility 등으로 구성하였다. Optical system에서의 6개의 Johanson type monochromator를 사용하여 분석가능한 x-ray energy range를 480eV에서 41keV까지 구현하였다. 이는 산소에서 우라늄까지 분석이 가능함을 의미하는 것으로, 산화물 연구에 많이 활용할 것으로 기대한다. XIEES는 투과 및 형광 X-ray를 검출할 수 있는 기능과 X-ray에 의해 여기 되는 모든(광전자, Aiger 전자, 이차전자)들을 검출할 수 있는 기능을 갖추고 있는데 이를 Total Electron Yield 측정이라고 한다. Total Electron Yield 측정은 박막 시료와 같이 투과가 되지 않는 시료를 분석할 뿐만 아니라, 경원소 분석, 낮은 에너지에서 흡수 edge가 나타나는 L-edge 측정을 통한 전자 구조 분석 등에 유용한다. 실험실용 XIEES 장비는 방사광가속기에 비해 x-ray flux가 크게 뒤지는 문제와 Total Electron Yield를 측정하는 데 있어서 source에서 나오는 x-ray beam이 진공용기 안에서 산란되어 이차전자를 여기하고 이 이차전자들이 전자검출기에 유입되어 측정에 영향을 미치는 background 문제 등이 있다. 이 두 가지 문제를 해결하기 위하여 Capillary tube를 사용하였다. 본 연구에서는 실험실용 XIEES 장비를 소개하고 이를 이용하여 Cu standard 시료에서 측정한 EXAFS 결과와 Capillary tube를 사용하여 얻은 x-ray flux 증진 및 background 제거 효과에 대해서 발표한다.

  • PDF

Attitude Estimation of Agricultural Unmanned Helicopters using Inertial Measurement Sensors (관성센서를 이용한 농용 무인 헬리콥터의 자세 추정)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • Agricultural unmanned helicopters have become a new paradigm for aerial application. Yet, such agricultural helicopters require easy and affordable attitude control systems. Therefore, this study presents an affordable attitude measurement system using a DCM (direction cosine matrix) algorithm that would be applied to agricultural unmanned helicopters. An IMU using a low-cost MEMS and an algorithm to estimate the attitude of the helicopter were applied in a gimbals structure to evaluate the accuracy of the attitude measurements. The estimation errors in the attitude were determined in comparison with the true angles determined by absolute position encoders. The DCM algorithm and sensors showed an accuracy of about 1.1% for the roll and pitch angle estimation. However, the accuracy of the yaw angle estimation at 3.7% was relatively larger. Such errors may be due to the magnetic field of the stepping motor and encoder system. Notwithstanding, since the intrinsic behavior of the agricultural helicopter remains steady, the determination of attitude would be reliable and practical.

Design of Vision Based Punching Machine having Serial Communication

  • Lee, Young-Choon;Lee, Seong-Cheol;Kim, Seong-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2430-2434
    • /
    • 2005
  • Automatic FPC punching instrument for the improvement of working condition and cost saving is introduced in this paper. FPC(flexible printed circuit) is used to detect the contact position of K/B and button like a cellular phone. Depending on the quality of the printed ink and position of reference punching point to the FPC, the resistance and current are varied to the malfunctioning values. The size of reference punching point is 2mm and the above. Because the punching operation is done manually, the accuracy of the punching degree is varied with operator's condition. Recently, The punching accuracy has deteriorated severely to the 2mm punching reference hall so that assembly of the K/B has hardly done. To improve this manual punching operation to the FPC, automatic FPC punching system is introduced. Precise mechanical parts like a 5-step stepping motor and ball screw mechanism are designed and tested and low cost PC camera is used for the sake of cost down instead of using high quality vision systems for the FA. 3D Mechanical design tool(Pro/E) is used to manage the exact tolerance circumstances and avoid design failures. Simulation is performed to make the complete vision based punching machine before assembly, and this procedure led to the manufacturing cost saving. As the image processing algorithms, dilation, erosion, and threshold calculation is applied to obtain an exact center position from the FPC print marks. These image processing algorithms made the original images having various noises have clean binary pixels which is easy to calculate the center position of print marks. Moment and Least square method are used to calculate the center position of objects. In this development circumstance, Moment method was superior to the Least square one at the calculation of speed and against noise. Main control panel is programmed by Visual C++ and graphical Active X for the whole management of vision based automatic punching machine. Operating modes like manual, calibration, and automatic mode are added to the main control panel for the compensation of bad FPC print conditions and mechanical tolerance occurring in the case of punch and die reassembly. Test algorithms and programs showed good results to the designed automatic punching system and led to the increase of productivity and huge cost down to law material like FPC by avoiding bad quality.

  • PDF

An Automatic Transfer System of the Path for an Unmanned Machine in the Greenhouse (온실내 무인작업기를 위한 경로 자동변환 시스템 개발)

  • 김창수;이대원;이승기
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.237-243
    • /
    • 2000
  • Agricultural machine is currently operated by man power in the greenhouse, which is oppressively hot and humid, and is for a farmer not to work in comfortable circumstances. In the future, agricultural machine will not have to operate by man power, but it will need do by unmanned power. In order to put into the automatic and unmanned operation of agricultural machine, this system was designed and built to move through the fixed path in the greenhouse. This system was composed of guiders(wires), a limit switch, an operating equipment, its software for automatizing a machine in the greenhouse. The guider was connected between the wall pillars, and the equipment was able to slide over the fixed path made of the guider, by rectilinear and rotational motion. A micro mouse was developed with a stepping motor to calculate on the success rate of its operation with the system As might be expected, this system with the micro mouse was moved the moved the paths with a success rate of 100% on the flat plane surface in our laboratory. However, on the sand plane or the other materials plane, the success rate was not better than 80%. If the micro mouse were well operated, the success rate was would be 100%. Based on the results of this research, this system would be expected to operate well on the path made of a simple wire.

  • PDF

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee, Suk;Lee, Sang-Hoon;Shin, Dong-Ho;Yang, Dae-Sik;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.122-125
    • /
    • 2004
  • In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration gating techniques that can adjust patients' beds by using reversed values of the data obtained. The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range 3 cm ${\sim}$3 m), host computer (RS232C) and stepping motor (torque 2.3Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place in order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data(three dimensional data form with distance of 2cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. The result of analyzing the acquisition-correction delay time for the three types of data values and about each value separately shows that the data values coincided with one another within 1% and that the acquisition-correction delay time was obtained real-time (2.34 ${\times}$ 10$^{-4}$sec). This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultra sonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

  • PDF

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee Suk;Lee Sang Hoon;Shin Dongho;Yang Dae Sik;Choi Myung Sun;Kim Chul Yong
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.316-324
    • /
    • 2004
  • Purpose : In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration sating techniques that can adjust patients' beds by using reversed values of the data obtained. Materials and Methods : The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range $3\~3$ m), host computer (RS232C) and stepping motor (torque 2.3 Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place In order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data (three dimensional data form with distance of 2 cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. Results : The result of analyzing the acquisition-correction delay time the three types of data values and about each value separately shows that the data values coincided with one another within $1\%$ and that the acquisition-correction delay time was obtained real-time $(2.34{\times}10^{-4}sec)$. Conclusion : This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultrasonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

Implementation of a Self Controlled Mobile Robot with Intelligence to Recognize Obstacles (장애물 인식 지능을 갖춘 자율 이동로봇의 구현)

  • 류한성;최중경
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.312-321
    • /
    • 2003
  • In this paper, we implement robot which are ability to recognize obstacles and moving automatically to destination. we present two results in this paper; hardware implementation of image processing board and software implementation of visual feedback algorithm for a self-controlled robot. In the first part, the mobile robot depends on commands from a control board which is doing image processing part. We have studied the self controlled mobile robot system equipped with a CCD camera for a long time. This robot system consists of a image processing board implemented with DSPs, a stepping motor, a CCD camera. We will propose an algorithm in which commands are delivered for the robot to move in the planned path. The distance that the robot is supposed to move is calculated on the basis of the absolute coordinate and the coordinate of the target spot. And the image signal acquired by the CCD camera mounted on the robot is captured at every sampling time in order for the robot to automatically avoid the obstacle and finally to reach the destination. The image processing board consists of DSP (TMS320VC33), ADV611, SAA7111, ADV7l76A, CPLD(EPM7256ATC144), and SRAM memories. In the second part, the visual feedback control has two types of vision algorithms: obstacle avoidance and path planning. The first algorithm is cell, part of the image divided by blob analysis. We will do image preprocessing to improve the input image. This image preprocessing consists of filtering, edge detection, NOR converting, and threshold-ing. This major image processing includes labeling, segmentation, and pixel density calculation. In the second algorithm, after an image frame went through preprocessing (edge detection, converting, thresholding), the histogram is measured vertically (the y-axis direction). Then, the binary histogram of the image shows waveforms with only black and white variations. Here we use the fact that since obstacles appear as sectional diagrams as if they were walls, there is no variation in the histogram. The intensities of the line histogram are measured as vertically at intervals of 20 pixels. So, we can find uniform and nonuniform regions of the waveforms and define the period of uniform waveforms as an obstacle region. We can see that the algorithm is very useful for the robot to move avoiding obstacles.