• Title/Summary/Keyword: Step-down voltage

Search Result 155, Processing Time 0.023 seconds

A Wide Voltage-Gain Range Asymmetric H-Bridge Bidirectional DC-DC Converter with a Common Ground for Energy Storage Systems

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.343-355
    • /
    • 2018
  • A wide-voltage-conversion range bidirectional DC-DC converter is proposed in this paper. The topology is comprised of one typical LC energy storage component and a special common grounded asymmetric H-bridge with four active power switches/anti-parallel diodes. The narrow output PWM voltage is generated from the voltage difference between two normal (wider) output PWM voltages from the asymmetric H-bridge with duty cycles close to 0.5. The equivalent switching frequency of the output PWM voltage is double the actual switching frequency, and a wide step-down/step-up ratio range is achieved. A 300W prototype has been constructed to validate the feasibility and effectiveness of the proposed bidirectional converter between the variable low voltage side (24V~48V) and the constant high voltage side (200V). The slave active power switches allow ZVS turn-on and turn-off without requiring any extra hardware. The maximum conversion efficiency is 94.7% in the step-down mode and 93.5% in the step-up mode. Therefore, the proposed bidirectional topology with a common ground is suitable for energy storage systems such as renewable power generation systems and electric vehicles with a hybrid energy source.

Electrical Charateristics of Step-down Piezoelectric Transformer

  • Shin Hoonbum;Ahn HyungKeun;Han Deuk-Young
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.47-51
    • /
    • 2001
  • In this paper, we have explained electrical characteristics of a step-down Rosen type piezoelectric transformer for AC-adapter. When the electric voltage is applied to the driving piezoelectric vibrator polarized in the longitudinal direction, then output voltage is generated at the generating piezoelectric vibrator polarized in the thickness direction due to the piezoelectric effects. From the piezoelectric direct and converse effects, symbolic expressions between the electric inputs and outputs of the step-down piezoelectric transformer have derived with an equivalent circuit model. With the symbolic expressions, load and frequency characteristics have discussed through simulation. Output voltage and current from a 11-layered and a 13-layered piezoelectric transformers were measured under the various conditions of loads and frequencies. First we measured resonant frequency from impedance curve and got equivalent impedance value of the piezoelectric transformer from admittance plot. It was shown from experiments that output voltage has increased and resonant frequency has changed according to various resistor loads. Output current has decreased inversely proportional to changing of loads. Moreover, the measured values of output voltage and current are well agreed with the simulated values of the proposed equivalent circuit model.

  • PDF

Zero-Voltage-Transition Buck Converter for High Step-Down DC-DC Conversion with Low EMI

  • Ariyan, Ali;Yazdani, Mohammad Rouhollah
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1445-1453
    • /
    • 2017
  • In this study, a new zero-voltage transition (ZVT) buck converter with coupled inductor using a synchronous rectifier and a lossless clamp circuit is proposed. The regular buck converter with tapped inductor has extended duty cycle for high step-down applications. However, the leakage inductance of the coupled inductor produced considerable voltage spikes across the switch. A lossless clamp circuit is used in the proposed converter to overcome this problem. The freewheeling diode was replaced with a synchronous rectifier to reduce conduction losses in the proposed converter. ZVT conditions at turn-on and turn-off instants were provided for the main switch. The synchronous rectifier switch turned on under zero-voltage switching, and the auxiliary switch turn-on and turn-off were under zero-current condition. Experimental results of a 100 W-100 kHz prototype are provided to justify the validity of the theoretical analysis. Moreover, the conducted electromagnetic interference of the proposed converter is measured and compared with its hard-switching counterpart.

A high voltage resonant genrator for X-ray apparatus (X-선 발생기기용 공진형 고전압 발생기)

  • 김학성;원충연
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.217-225
    • /
    • 1996
  • This paper describes a high power resonant inverter for diagnostic X-ray generators using zero-voltage soft-switching technology. The system consists of a step-down chopper, a resonant phase-shift PWM inverter, a hihg-voltage diode, and high voltage cables a smoothing DC capacitor. The inverter makes use the leakage inductance of the hihg-voltage transformer and external capacitor as resonant components. The rectified input voltage is controlled by a step-down chopper with input voltage compensator. The output regualtion is obtained by a resonant phase-shift PWM inverter with the digital feedback controller using DSP (digital signal processor), resulting in fast rising time and wide output voltage variation. The theoretical results are correlated with results from an experimental prototype of a 7-kVp, 300mA (21kW).

  • PDF

A Study on the Design of Electrolysis Power Using Inverter (인버터를 이용한 전기분해전원 설계에 과한 연구)

  • 이정민;목형수;최규하;최동규
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.55-59
    • /
    • 1998
  • By this time, Diode Rectifier or SCR has been used to gain DC Voltage for Electrolysis Power. Generally DC Voltage is produced from rectifier shall be transformed before rectifier using step-down transformer to obtain adaptable DC Voltage, rectifier output. In the same way, rectifier using SCR shall obtain output voltage after step-down voltage through transformer and control of the SCR firing angle. Transformer shall be used for this two methods to adjust the voltage. But the size and weight of the transformer are increased in accordance with the increase of capacity, and the hardships are accompanied in workspace or transportation. Besides, only the value of input voltage is possible to be regulated, and the expectation of current control is almost impossible during Electrolysis. This study has conducted Design and Simulation to reduce the size and weight of transformer and to be enable voltage and current control of Electrolysis power through high-speed switching using Inverter, Electronics device.

  • PDF

The Design of low voltage step-down DC-DC Converter with ESD protection device of low voltage triggering characteristics (저 전압 트리거형 ESD 보호회로를 탑재한 저 전압 Step-down DC-DC Converter 설계)

  • Yuk, Seung-Bum;Lee, KJae-Hyun;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.149-155
    • /
    • 2006
  • In this study, the design of low voltage DC-DC converter with low triggering ESD (Electro-Static Discharge) protection circuit was investigated. The purpose of this paper is design optimization for low voltage(2.5V to 5.5V input range) DC-DC converter using CMOS switch. In CMOS switch environment, a dominant loss component is not switching loss but conduction loss at 1.2MHz switching frequency. In this study a constant frequency PWM converter with synchronous rectifier is used. And zener Triggered SCR device to protect the ESD phenomenon was designed. This structure reduces the trigger voltage by making the zener junction between the lateral PNP and base of lateral NPN in SCR structure. The triggering voltage was simulated to 8V.

  • PDF

Dynamic Analysis and Control Circuit Design of Isolated Double Step-Down DC-DC Converter (절연형 이중 강압 직류-직류 컨버터의 동특성 해석 및 제어회로 설계)

  • Ha, Heonchul;Kim, Hansang;Choi, Byungcho
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.229-230
    • /
    • 2015
  • This paper presents practical details about control-loop design and dynamic analysis for a voltage-mode controlled isolated double step-down DC-DC converter. Graphical loop gain method is used to design the feedback compensation and analyze the closed-loop performance of isolated double step-down DC-DC converter. The results of the control design and closed-loop analysis are validated by experiments on a prototype converter.

  • PDF

A High-power Voltage Mode Buck Converter IC for Automotive Applications (자동차용 고출력 전압모드 벅컨버터 IC)

  • Park, Hyeon-Il;Park, Shi-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.555-558
    • /
    • 2009
  • This paper presents a step-down converter IC for automotive applications. This device was designed for a 40 V/1 A high-power output for voltage reference of automotive IC. It provides 250kHz PWM (pulse width modulation) and PFM(pulse frequency modulation) according to load conditions. This device was simulated spectre of IC-design-tools and fabricated Dong-bu Hitec 0.35um BD350BA process.

Series Compensated AC Voltage Regulator using AC chopper with Auxiliary Transformer (교류쵸퍼와 보조변압기를 사용한 직렬보상형 교류전압제어장치)

  • Ryoo H.J.;Kim J.S;Rim G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.106-109
    • /
    • 2003
  • This paper describes an AC voltage regulator using AC chopper and auxiliary transformer which is series connected with main input. It has many advantages such as fast voltage control, high efficiency and low THD. A detail study of step down AC voltage regulator is described and two kinds of novel step-up/down voltage regulator for AVR are proposed. The operation principle and PWM method of the proposed regulator are described. Experimental results show that it can be used as AC voltage regulator for special purpose very efficiently.

  • PDF

Analysis of Step-Down Converter with Low Ripple for Smart IoT Devices (스마트 사물인터넷 기기용 저리플 방식의 스텝다운 컨버터 분석)

  • Kim, Da-Sol;Al-Shidaifat, AlaaDdin;Gu, Jin-Seon;Kumar, Sandeep;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.641-644
    • /
    • 2021
  • Wearable devices and IoT are being utilized in various fields, where all systems are developing in the direction of multi-functionality, low power consumption, and high speed. In this paper, we propose a DC -DC Step-down C onverter for IoT smart devices. The proposed DC -DC Step-down converter is composed of a control block of the power supply stage. It also consists of an overheat protection circuit, under-voltage protection circuit, an overvoltage protection circuit, a soft start circuit, a reference voltage circuit, a lamp generator, an error amplifier, and a hysteresis comparator. The proposed DC-DC converter was designed and fabricated using a Magnachip / Hynix 180nm CMOS process, 1-poly 6-metal, the measured results showed a good match with the simulation results.