• Title/Summary/Keyword: Step voltage

Search Result 1,158, Processing Time 0.037 seconds

Comparative Measurement of Touch and Step Voltages in Ground Systems (접지시스템에서 접촉전압과 보폭전압의 비교측정)

  • Kim, Hwang-Kuk;Moon, Byung-Doo;Park, Dae-Won;Kil, Gyung-Suk;Han, Ju-Seop
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.311-315
    • /
    • 2008
  • Ground systems set the reference voltage level of circuit and system, and suppress Ground Potential Rise (GPR) by flowing fault currents to ground safely. There are several parameters which evaluate the performance of ground systems as ground resistance, touch voltage and step voltage. The touch and step voltages are especially important to ensure safety of human body. In this paper, we measured the touch and step voltages by injection of power frequency and surge current. Also correlation between touch and step voltages is compared and analyzed for the same ground systems.

  • PDF

Study of Touch and Step Voltages with Grounding Grid Using Electrolytic Tank and Analysis Program

  • Gil, Hyoung-Jun;Kim, Hyang-Kon;Kill, Gyung-Suk
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2010
  • In order to analyze the potential rise of ground surface of grounding grid installed in buildings, the grounding simulator has been designed and fabricated as substantial and economical measures. This paper describes the study of touch and step voltages with grounding grid where earth leakage current is injected. To assess risk voltage of grounding grid, the grounding simulator and CDEGS program were used to obtain measured data and theoretical results of this study. The grounding simulator was composed of an electrolytic tank, AC power supply, a movable potentiometer, and test grounding electrodes. The potential rise was measured by grounding simulator, and the touch and step voltages were computed by CDEGS program. As a consequence, the touch voltage and step voltage above the grounding grid were very low, but were significantly increased near the edge of grounding grid.

Symmetrical Cockcroft-Walton circuit for Transformerless High Step-Up DC-DC Converter (변압기 없는 고승압 직류 컨버터용 대칭형 Cockcroft-Walton 회로)

  • Cha, Dae-Joong;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.70-75
    • /
    • 2015
  • High Step-up DC-DC Converters have been demanded for renewable energy applications. Transformer or coupled inductor is generally used to boost output voltage of converters. This methods can relatively obtain high voltage than others, whereas have heavy weight and high cost. To complement these disadvantages, we studied transformerless high step-up DC-DC converter. In various transformerless topologies, Boost converters combined with Cockcroft-Walton have studied. In this paper, we proposed a symmetrical Cockcroft-Walton circuit for transformerless high step-up DC-DC converter. Finally, we simulated proposed converter to compare with existing converter. As a result, proposed converter has higher duty ratio or lower cost than existing transformerless converters which are discussed in this paper.

A novel method for improvement of the output voltage waveform of a single phase VSI (단상전압원 인버어터의 새로운 출력파형 개선법)

  • Kim, Yeong-Min;Park, Hyun-Chul;Lee, Su-Weon;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.400-402
    • /
    • 1995
  • A novel type of single phase multi-step inverter is proposed, which has twelve-stepped levels of the output voltage. In this inverter the waveform of the output votage has smaller harmonic contents than those of a conventional six-step inverter. In this paper a new multi-step technique is analyzed. This new multi-step technique of the twelve-stewed single phase voltage source inverter has the advantage compared with the conventional six-step inverter, and the experimental results are proved by the calculation using spectrum-analyzer.

  • PDF

Series Compensated Step-down AC Voltage Regulator using AC Chopper with Transformer

  • Ryoo, H.J.;Kim, J.S.;Rim, G.H.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.277-282
    • /
    • 2005
  • This paper describes a step-down AC voltage regulator using an AC chopper and auxiliary transformer, which is a series connected to the main input. The detail design of the AC regulator, logic and PWM pattern of the AC chopper is described and the three-phase AC regulator using two single­phase AC choppers with a three transformer configuration is proposed for three-phase application. The proposed three-phase system has the advantages of lower system cost due to reduced switch number and gate driver circuit as well as advantages of decreased size and weight because it uses a series compensated scheme. The proposed AC regulator has many benefits such as fast voltage control, high efficiency and simple control logic. Experimental results indicate that it can be used as a step-down AC voltage regulator for power saving purposes very efficiently.

An Enhanced Finite-Settling-Step Direct Torque and Flux Control (FSS-DTFC) for IPMSM Drives

  • Kim, Sehwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1367-1374
    • /
    • 2016
  • This paper presents a discrete-time version of voltage and current limited operation using an enhanced direct torque and flux control method for interior permanent magnet synchronous motor (IPMSM) drives. A command voltage vector for airgap torque and stator flux regulation can be uniquely determined by the finite-settling-step direct torque and flux control (FSS-DTFC) algorithm under physical constraints. The proposed command voltage vector trajectories can be developed to achieve the maximum inverter voltage utilization for the discrete-time current limit (DTCL)-based FSS-DTFC. The algorithm can produce adequate results over a number of the potential secondary upsets found in the steady-state current limit (SSCL)-based DTFC. The fast changes in the torque and stator flux linkage improve the dynamic responses significantly over a wide constant-power operating region. The control strategy was evaluated on a 900W IPMSM in both simulations and experiments.

Process and Electrical Characteristics of Step-down Piezoelectric Transformers (강압용 압전변압기 제작 및 전기적특성)

  • Kwon, Ju-Nam;Shin, Hoon-Bum;Han, Deuk-Young;Ahn, Hyung-Keun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.595-598
    • /
    • 2004
  • We have explained Process and electrical characteristics of a step-down Rosen type piezoelectric transformer for AC-adapter. When the electric voltage is applied to the driving piezoelectric vibrator notarized in the thickness direction, then output voltage is generated at the generating piezoelectric vibrator polarized in the thickness direction due to the piezoelectric effects. Output voltage and current from a single-layered piezoelectric transformer were measured under the various condition of loads and frequencies It was shown from experiments that output voltage has increased and resonance frequency has changed according to various resistor loads. Output current has decreased inversely proportional to the loads

  • PDF

A Simple Method for Conducting Angle Calculation of Switch Devices in Cascaded Inverters Using Step Pulse Waves (스텝 펄스파를 사용하는 캐스케이드 인버터에서 스위치의 간단한 도통각 계산법)

  • Kim H.C.;Kim T.J.;Kang D.W.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.588-592
    • /
    • 2003
  • In recent years, the multilevel inverter synthesizing the output voltage with step pulse has been widely used as a solution for high power and high voltage applications. This paper proposes a simple method to obtain the conducting . angle. It is calculated by using voltage-second areas of the divided reference voltage according to the output voltage levels and these areas have influence on output step pulse waves. It is possible to reduce an amount of calculation because it is not required to solve the simultaneous equations by an iterative method. Also, the proposed method can get the conducting angle by means of on line.

  • PDF

A new interleaved high step up converter with low voltage stress on the main switches

  • Tohidi, Babak;Delshad, Majid;Saghafi, Hadi
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.521-531
    • /
    • 2020
  • In this paper, a new interleaved high step-up converter with low voltage stress on the switches is proposed. In the proposed converter, soft switching is provided for all switches by just one auxiliary switch, which decreases the conduction loss of auxiliary circuit. Also, the auxiliary circuit is expanded on the converter with more input branches. In the converter all main switches operate under zero voltage switching condition and auxiliary switch operate under zero current switching condition. Because of the interleaved structure, the reliability of converter increases and input current ripples decreases. The clamp capacitor in the converter not only absorb the voltage spikes across the switch due to leakage inductance, but also improve voltage gain. The proposed converter is fully analyzed and to verify the theoretical analysis, a 100 W prototype was implemented. Also, to show the effectiveness of auxiliary circuit on conduction EMI, EMI of the proposed converter comprised with hard switching counterpart.

Output Waveform Improvement of Double-Connected 3-Phase Voltage Source Inverter by Single-Phase Inverter (단상 인버터의 동작에 의한 이중접속 3상 전압원 인버터의 출력파형 개선)

  • 최세완;양승욱
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • This paper proposes a new double-connected 3-phase voltage source inverter with improved output voltage waveform. An auxiliary single-phase inverter injects a ripple voltage into the double-connected inverter to converter 12-step operation to 36-step operation. The KVA rating of the output phase-shifting transformer is reduced by employing a harmonic canceling reactor. The whole rectifier-inverter system including the proposed technique is introduced, and the experimental results are provided.

  • PDF