• Title/Summary/Keyword: Step of biofilm formation

Search Result 5, Processing Time 0.018 seconds

Microscope Examination of Attached Biofilm under Anaerobic Conditions (혐기성 조건에서 담체에 부착된 미생물의 관찰)

  • 박성열;김도한;나영수;박영식;송승구
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.100-105
    • /
    • 2001
  • Microstructural examinations were performed on the anaerobic biofilm from reactor filled with PE support media. Optical microscope, SEM and fluorescent microscope were used for qualitative and morphological studies on the attached microorganism under anaerobic condition. Microorganisms were attached in crevices where protection from shear forces of surfaces where easy to contact with support media surface. A hypothesis for biofilm accumulation occurs on a surface such as polymer support media is presented schematically : 1st step ; cell-support media attachment, 2nd step ; cell-support media attachment and cell-cell attachment, 3rd step ; attached biofilm from neighboring crevices joins together and growing, 4th step ; mature and irregualar biofilm was formed. In SEM photographs, shape and structures of biofilm were observed, but microorganism species and methanogens were not identified. A large number of methanogenic bacteria were identified on the surface of PE substratum by fluorescence under 480nm of radiation and it was estimated that methanogenic bacteria was related to initial attachment of bacteria under anaerobic condition.

  • PDF

Anti-Biofilm Effect of Egg Yolk Phosvitin by Inhibition of Biomass Production and Adherence Activity against Streptococcus mutans

  • Kim, Hyeon Joong;Lee, Jae Hoon;Ahn, Dong Uk;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.1001-1013
    • /
    • 2020
  • The formation of biofilms on the enamel surface of teeth by Streptococcus mutans is an important step in dental plaque formation, demineralization, and early caries because the biofilm is where other bacteria involved in dental caries attach, grow, and proliferate. The objectives of this study were to determine the effect of phosvitin (PSV) on the biofilm formation, exopolysaccharides (EPS) production, adherence activity of S. mutans, and the expression of genes related to the compounds essential for biofilm formation (quorum-sensing inducers and components of biofilm matrix) by S. mutans. PSV significantly reduced the biofilm-forming activity of S. mutans and increased the degradation of preformed biofilms by S. mutans. PSV inhibited the adherence activity of S. mutans by 31.9%-33.6%, and the production of EPS by 62%-65% depending upon the strains and the amount of PSV added. The expressions of genes regulating the production of EPS and the quorum-sensing-inducers (gtfA, gtfD, ftf, relA, vicR, brpA, and comDE) in all S. mutans strains were down-regulated by PSV, but gtfB was down-regulated only in S. mutans KCTC 5316. Therefore, the anti-biofilm-forming activity of PSV was accomplished through the inhibition of biofilm formation, adherence activity, and the production of quorum-sensing inducers and EPS by S. mutans.

Effects of different surface finishing protocols for zirconia on surface roughness and bacterial biofilm formation

  • Lee, Du-Hyeong;Mai, Hang-Nga;Thant, Phyu Pwint;Hong, Su-Hyung;Kim, Jaewon;Jeong, Seung-Mi;Lee, Keun-Woo
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.1
    • /
    • pp.41-47
    • /
    • 2019
  • PURPOSE. Surface finishing of a zirconia restoration is essential after clinical adjustment. Herein, we investigated the effects of a surface finishing protocol for monolithic zirconia on final roughness and bacterial adherence. MATERIALS AND METHODS. Forty-eight disk-shaped monolithic zirconia specimens were fabricated and divided into four groups (n = 12) based on initial surface treatment, finishing, and polishing protocols: diamond bur+polishing bur (DP group), diamond bur+stone grinding bur+polishing bur (DSP group), no diamond bur+polishing bur (NP group), and no diamond bur+stone grinding bur+polishing bur (NSP group). Initial and final surface roughness was measured with a profilometer, and shown using scanning electron microscope. Bacterial adhesion was evaluated by quantifying Streptococcus mutans in the biofilm. Kruskal-Wallis and Mann-Whitney U tests were used to compare results among groups, and two-way analysis of variance was used to evaluate the effects of grinding burs on final roughness (${\alpha}=.05$). RESULTS. The DP group had the highest final Ra value, followed by the DSP, NP, and NSP groups. Use of the stone grinding bur as a coarse-finishing step significantly decreased final Ra values when a diamond bur was used (P<.001). Omission of the stone grinding bur increased biofilm formation on specimen surfaces. Combining a stone grinding bur with silicone polishing burs produced the smallest final biofilm values, regardless of the use of a diamond bur in initial surface treatment. CONCLUSION. Coarse finishing of monolithic zirconia with a stone grinding bur significantly decreased final Ra values and bacterial biofilm formation when surfaces had been roughened by a diamond bur.

Recent Progress of Antibacterial Coatings on Solid Substrates Through Antifouling Polymers (박테리아 부착억제 고분자 기반 고체 표면의 항균 코팅 연구 동향)

  • Ko, Sangwon;Lee, Jae-Young;Park, Duckshin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.371-378
    • /
    • 2021
  • The formation of hydrophilic surface based on polymers has received great attention due to the anti-adhesion of bacteria on solid substrates. Anti-adhesion coatings are aimed at suppressing the initial step of biofilm formation via non-cytotoxic mechanisms, and surfaces applied hydrophilic or ionic polymers showed the anti-adhesion effect for bioentities, such as proteins and bacteria. This is attributed to the formation of surface barrier from hydration layers, repulsions and osmotic stresses from polymer brushes, and electrostatic interactions between ionic polymers and cell surfaces. The antifouling polymer coating is usually fabricated by the grafting method through the bonding with functional groups on surfaces and the deposition method utilizing biomimetic anchors. This mini-review is a summary of representative antifouling polymers, coating strategies, and antibacterial efficacy. Furthermore, we will discuss consideration on the large area surface coating for application to public facilities and industry.

Exploring the Microbial Community and Functional Characteristics of the Livestock Feces Using the Whole Metagenome Shotgun Sequencing

  • Hyeri Kim;Eun Sol Kim;Jin Ho Cho;Minho Song;Jae Hyoung Cho;Sheena Kim;Gi Beom Keum;Jinok Kwak;Hyunok Doo;Sriniwas Pandey;Seung-Hwan Park;Ju Huck Lee;Hyunjung Jung;Tai Young Hur;Jae-Kyung Kim;Kwang Kyo Oh;Hyeun Bum Kim;Ju-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.51-60
    • /
    • 2023
  • The foodborne illness is the important public health concerns, and the livestock feces are known to be one of the major reservoirs of foodborne pathogens. Also, it was reported that 45.5% of foodborne illness outbreaks have been associated with the animal products contaminated with the livestock feces. In addition, it has been known that the persistence of a pathogens depends on many potential virulent factors including the various virulent genes. Therefore, the first step to understanding the public health risk of livestock feces is to identify and describe microbial communities and potential virulent genes that contribute to bacterial pathogenicity. We used the whole metagenome shotgun sequencing to evaluate the prevalence of foodborne pathogens and to characterize the virulence associated genes in pig and chicken feces. Our data showed that the relative abundance of potential foodborne pathogens, such as Bacillus cereus was higher in chickens than pigs at the species level while the relative abundance of foodborne pathogens including Campylobacter coli was only detected in pigs. Also, the microbial functional characteristics of livestock feces revealed that the gene families related to "Biofilm formation and quorum sensing" were highly enriched in pigs than chicken. Moreover, the variety of gene families associated with "Resistance to antibiotics and toxic compounds" were detected in both animals. These results will help us to prepare the scientific action plans to improve awareness and understanding of the public health risks of livestock feces.