• Title/Summary/Keyword: Step motor

Search Result 660, Processing Time 0.038 seconds

Development of a Static Prosthesis-Alignment Device Using a Force Plate and a Laser Light (힘측정판과 레이저 광을 이용한 정적 의족정렬장치의 개발)

  • 이기원;김기완;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.385-390
    • /
    • 2000
  • The alignment of the prosthetics is very important in an amputee's gait. In the present study. a static prosthesis-alignment device was developed. It consisted of a force plate with four load cells, a laser beam controlled by a step motor, and a control part programmed by PCBASIC. Using the static prosthesis-alignment device, we measured the distance between the load line and various joints of 24 normal volunteers in three standing postures. such as neutral, forward leaning, and backward leaning. Only neutral postures were evaluated on four trans-tibial amputees. The load line for the normal person's neutral position located anterior to the ankle, the knee, and the greater trochanter, but posterior to the shoulder joint. Forward and backward leaning of the normal person resulted in a significant anterior and posterior movements of the load line, respectively. The load line for the amputated side of the trans-tibial amputee also located anterior to the ankle, the extremity prostheses, providing a good relative locations of the load line with respect to various joints.

  • PDF

Experimental Comparison on Vibration Attenuation Performances of the Piezoelectric Mount in Same Geometric Constraints with the Rubber Mount (고무마운트와 동일한 형상 조건을 갖는 압전마운트의 진동저감 성능에 대한 실험적 비교 고찰)

  • Han, Young-Min
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.166-171
    • /
    • 2021
  • An active mount is devised in same geometric constraints with a conventional rubber mount. The proposed mount features the piezoelectric actuator which can be used to reduce the vibration at marine vessels or automotive vehicles. As a first step, a passive rubber mount is adopted and its dynamic characteristics are experimentally evaluated. Based on the geometry of the rubber mount, a rubber element for the active mount is manufactured and integrated with two piezostacks in series, in which the piezostack is operated as an inertial type of actuator. A conventional PID controller featured by the simple and easy implementation, is then designed to attenuate the non-resonant high frequency vibration transmitted from the base excitation. Finally, the control performances of a proposed active mount are evaluated in the wide frequency range and compared with those of the conventional rubber mount.

Does Strategy of Downward Stepping Stair Due to Load of Additional Weight Affect Lower Limb's Kinetic Mechanism?

  • Ryew, Checheong;Yoo, Taeseok;Hyun, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.26-33
    • /
    • 2020
  • This study measured the downward stepping movement relative to weight change (no load, and 10%, 20%, 30% of body weight respectively of adult male (n=10) from standardized stair (rise of 0.3 m, tread of 0.29 m, width of 1 m). The 3-dimensional cinematography and ground reaction force were also utilized for analysis of leg stiffness: Peak vertical force, change in stance phase leg length, Torque of whole body, kinematic variables. The strategy heightened the leg stiffness and standardized vertical ground reaction force relative to the added weights (p<.01). Torque showed rather larger rotational force in case of no load, but less in 10% of body weight (p<.05). Similarly angle of hip joint showed most extended in no-load, but most flexed in 10% of body weight (p<.05). Inclined angle of body trunk showed largest range in posterior direction in no-load, but in vertical line nearly relative to added weights (p<.001). Thus the result of the study proved that downward stepping strategy altered from height of 30 cm, regardless of added weight, did not affect velocity and length of lower leg. But added weight contributed to more vertical impulse force and increase of rigidity of whole body than forward rotational torque under condition of altered stepping strategy. In future study, the experimental on effect of weight change and alteration of downward stepping strategy using ankle joint may provide helpful information for development of enhanced program of prevention and rehabilitation on motor performance and injury.

Design and Implementation of a Tunable Cavity Bandpass Filter (주파수 가변 캐비티 대역통과필터의 설계 및 구현)

  • Kang, Sanggee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.483-488
    • /
    • 2020
  • In recent years, the demand for wireless devices incorporating several wireless communication systems into one has been increasing in order to provide services that meet the diverse needs of consumers. Wireless devices consisting of various wireless communication systems require many frequency fixed filters. A frequency tunable filter can replace a number of frequency fixed filters in the wireless devices. If a frequency tunable filter is used in wireless systems, the system can be configured more efficiently. In this paper, a 3-pole frequency tunable BPF(bandpass filter) operating in the frequency band of 800 ~ 2400MHz is designed. In order to widen the operating frequency band, a tuning screw is designed to have a step and a linear motor is used to facilitate the adjustment of the tuning screw. The implemented frequency tunable BPF operates in the designed frequency range and has the maximum insertion loss of 2.82dB in the channel band and the minimum attenuation of 18.7dB at ± 50MHz frequency offset from the center frequency of the band.

Diagnostic classification and clinical aspects of floppy infants in the neonatal and pediatric intensive care units (신생아 및 소아 중환자실에 입원한 늘어지는 영아(floppy infant)의 진단적 분류 및 임상적 고찰)

  • Kim, Eun Sun;Jung, Kyung Eun;Kim, Sang Duk;Kim, Eo Kyung;Chae, Jong Hee;Kim, Han Suk;Park, June Dong;Kim, Ki Joong;Kim, Beyong Il;Hwang, Yong Seung;Choi Jung-Hwan
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.11
    • /
    • pp.1158-1166
    • /
    • 2006
  • Purpose : The purpose of this study is to make a diagnostic classification and discuss a diagnostic strategy of floppy infants by investigating clinical, neurological, electrophysiological, and genetic analysis of infants admitted to intensive care units with the complaint of hypotonia. Methods : A retrospective study was performed from Jan. 1993 to Dec. 2005 in neonatal and pediatric intensive care units of Seoul National University Children's Hospital. Clinical features and all tests related to hypotonia were investigated. Results : There were 21 cases of floppy infants admitted to intensive care units. Final diagnosis was classified as centra (7 cases[33.3 percent]), peripheral (11 cases [52.4 percent]), and unspecified (3 cases [14.3 percent]). Among the central group, three patients were diagnosed as hypoxic ischemic encephalopathy, two patients as Prader-Willi syndrome, one patient as chromosomal disorder, and one patient as transient hypotonia. Among the peripheral group, four patients were diagnosed as myotubular myopathy, three patients as SMA type 1, two patients as congenital myotonic dystrophy, one patient as congenital muscular dystrophy, and one as unspecified motor-neuron disease. Motor power was above grade 3 on average, and deep tendon reflex was brisk in the central group. Among investigations, electromyography showed 66 percent sensitivity in the peripheral group, and muscle biopsy was all diagnostic in the peripheral group. Brain image was diagnostic in the central group, and Prader-Willi FISH or karyotyping was helpful in diagnosis in central group. Morbidity and mortality was more severe in the peripheral group Conclusion : Classification of diagnosis by clinical characteristics in this study, and application of investigations step by step, may provide an effective diagnostic strategy.

Development of a Model of Brain-based Evolutionary Scientific Teaching for Learning (뇌기반 진화적 과학 교수학습 모형의 개발)

  • Lim, Chae-Seong
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.990-1010
    • /
    • 2009
  • To derive brain-based evolutionary educational principles, this study examined the studies on the structural and functional characteristics of human brain, the biological evolution occurring between- and within-organism, and the evolutionary attributes embedded in science itself and individual scientist's scientific activities. On the basis of the core characteristics of human brain and the framework of universal Darwinism or universal selectionism consisted of generation-test-retention (g-t-r) processes, a Model of Brain-based Evolutionary Scientific Teaching for Learning (BEST-L) was developed. The model consists of three components, three steps, and assessment part. The three components are the affective (A), behavioral (B), and cognitive (C) components. Each component consists of three steps of Diversifying $\rightarrow$ Emulating (Executing, Estimating, Evaluating) $\rightarrow$ Furthering (ABC-DEF). The model is 'brain-based' in the aspect of consecutive incorporation of the affective component which is based on limbic system of human brain associated with emotions, the behavioral component which is associated with the occipital lobes performing visual processing, temporal lobes performing functions of language generation and understanding, and parietal lobes, which receive and process sensory information and execute motor activities of the body, and the cognitive component which is based on the prefrontal lobes involved in thinking, planning, judging, and problem solving. On the other hand, the model is 'evolutionary' in the aspect of proceeding according to the processes of the diversifying step to generate variants in each component, the emulating step to test and select useful or valuable things among the variants, and the furthering step to extend or apply the selected things. For three components of ABC, to reflect the importance of emotional factors as a starting point in scientific activity as well as the dominant role of limbic system relative to cortex of brain, the model emphasizes the DARWIN (Driving Affective Realm for Whole Intellectual Network) approach.

Analysis on Relation between Rehabilitation Training Movement and Muscle Activation using Weighted Association Rule Discovery (가중연관규칙 탐사를 이용한 재활훈련운동과 근육 활성의 연관성 분석)

  • Lee, Ah-Reum;Piao, Youn-Jun;Kwon, Tae-Kyu;Kim, Jung-Ja
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.7-17
    • /
    • 2009
  • The precise analysis of exercise data for designing an effective rehabilitation system is very important as a feedback for planing the next exercising step. Many subjective and reliable research outcomes that were obtained by analysis and evaluation for the human motor ability by various methods of biomechanical experiments have been introduced. Most of them include quantitative analysis based on basic statistical methods, which are not practical enough for application to real clinical problems. In this situation, data mining technology can be a promising approach for clinical decision support system by discovering meaningful hidden rules and patterns from large volume of data obtained from the problem domain. In this research, in order to find relational rules between posture training type and muscle activation pattern, we investigated an application of the WAR(Weishted Association Rule) to the biomechanical data obtained mainly for evaluation of postural control ability. The discovered rules can be used as a quantitative prior knowledge for expert's decision making for rehabilitation plan. The discovered rules can be used as a more qualitative and useful priori knowledge for the rehabilitation and clinical expert's decision-making, and as a index for planning an optimal rehabilitation exercise model for a patient.

The 3-D Motion Analysis of Kinematic Variety on Lower Extremity during Ramp Ascent at Different Inclinations (정상인의 오름 경사로 보행 시 경사각에 따른 하지 관절의 삼차원적 동작 분석)

  • Han, Jin-Tae;Lee, Jong-Dae;Bae, Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.4
    • /
    • pp.633-650
    • /
    • 2005
  • The aim of this study was to investigate the kinematics of young adults during ascent ramp climbing at different inclinations. Twenty-three subjects ascended a four step at four different inclinations(level, $8^{\circ},\;16^{\circ},\;24^{\circ}$). The 3-D kinematics was analysed by a camera-based falcon system. Groups difference was tested with one -way ANOVA and SNK test. The different kinematic patterns of ramp ascent were analysed and compared to level walking patterns. The kinematics of ramp walking could be clearly distinguished from the kinematics of level walking. In sagittal plane, Ankle joint was more dorsiflexed at initial contact and Max. dorsiflex. during stance phase with $16^{\circ},\;24^{\circ}$ inclination and more plantarflexed at toe off and Max. plantarflex. during swing phase with $24^{\circ}$(p<.001). Knee joint was more flexed at initial contact with $16^{\circ},\;24^{\circ}$ inclination(p<.001). Hip joint was more flexed at initial contact and Max. flex. during swing phase with $16^{\circ},\;24^{\circ}$ inclination and at toe off with $24^{\circ}$(p<.001) and was more extended at Max. ext. during stance phase with $24^{\circ}$(p<.05). In frontal plane, ankle joint was more everted at Max. eversion. during stance phase with $16^{\circ},\;24^{\circ}$ inclination(p<.001). Knee joint was more increased at Max. varus. during stance phase with $16^{\circ},\;24^{\circ}$ inclination(p<.001). Hip joint was not differentiated with different inclinations. In horizontal plane, all joints were not differentiated with different inclinations. Conclusionally, In ascent ramp walking, the different gait pattern generally occurred at over $16^{\circ}$ on the ascending ramp in sagittal and frontal plane. These results suggest that there is a certain inclination angle or angular range where subjects do switch between a level walking and a ascent ramp walking gait pattern. This shows their motor control strategy between level and ascent ramp walking. Further studies are necessary to confirm and detect the ascent ramp gait patterns.

  • PDF

Design of Vision Based Punching Machine having Serial Communication

  • Lee, Young-Choon;Lee, Seong-Cheol;Kim, Seong-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2430-2434
    • /
    • 2005
  • Automatic FPC punching instrument for the improvement of working condition and cost saving is introduced in this paper. FPC(flexible printed circuit) is used to detect the contact position of K/B and button like a cellular phone. Depending on the quality of the printed ink and position of reference punching point to the FPC, the resistance and current are varied to the malfunctioning values. The size of reference punching point is 2mm and the above. Because the punching operation is done manually, the accuracy of the punching degree is varied with operator's condition. Recently, The punching accuracy has deteriorated severely to the 2mm punching reference hall so that assembly of the K/B has hardly done. To improve this manual punching operation to the FPC, automatic FPC punching system is introduced. Precise mechanical parts like a 5-step stepping motor and ball screw mechanism are designed and tested and low cost PC camera is used for the sake of cost down instead of using high quality vision systems for the FA. 3D Mechanical design tool(Pro/E) is used to manage the exact tolerance circumstances and avoid design failures. Simulation is performed to make the complete vision based punching machine before assembly, and this procedure led to the manufacturing cost saving. As the image processing algorithms, dilation, erosion, and threshold calculation is applied to obtain an exact center position from the FPC print marks. These image processing algorithms made the original images having various noises have clean binary pixels which is easy to calculate the center position of print marks. Moment and Least square method are used to calculate the center position of objects. In this development circumstance, Moment method was superior to the Least square one at the calculation of speed and against noise. Main control panel is programmed by Visual C++ and graphical Active X for the whole management of vision based automatic punching machine. Operating modes like manual, calibration, and automatic mode are added to the main control panel for the compensation of bad FPC print conditions and mechanical tolerance occurring in the case of punch and die reassembly. Test algorithms and programs showed good results to the designed automatic punching system and led to the increase of productivity and huge cost down to law material like FPC by avoiding bad quality.

  • PDF

The Obstacle Avoidance Algorithm of Mobile Robot using Line Histogram Intensity (Line Histogram Intensity를 이용한 이동로봇의 장애물 회피 알고리즘)

  • 류한성;최중경;구본민;박무열;방만식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1365-1373
    • /
    • 2002
  • In this paper, we present two types of vision algorithm that mobile robot has CCD camera. for obstacle avoidance. This is simple algorithm that compare with grey level from input images. Also, The mobile robot depend on image processing and move command from PC host. we has been studied self controlled mobile robot system with CCD camera. This system consists of digital signal processor, step motor, RF module and CCD camera. we used wireless RF module for movable command transmitting between robot and host PC. This robot go straight until recognize obstacle from input image that preprocessed by edge detection, converting, thresholding. And it could avoid the obstacle when recognize obstacle by line histogram intensity. Host PC measurement wave from various line histogram each 20 pixel. This histogram is (x, y) value of pixel. For example, first line histogram intensity wave from (0, 0) to (0, 197) and last wave from (280, 0) to (2n, 197. So we find uniform wave region and nonuniform wave region. The period of uniform wave is obstacle region. we guess that algorithm is very useful about moving robot for obstacle avoidance.