• Title/Summary/Keyword: Step length

Search Result 1,050, Processing Time 0.031 seconds

Effect of Underwater Gait Training with a Progressive Increase in Speed on Balance, Gait, and Endurance in Stroke Patients

  • Kim, Heejoong;Chung, Yijung
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.4
    • /
    • pp.204-211
    • /
    • 2019
  • Purpose: This study aimed to investigate the effect of progressive speed increase during underwater gait training on stroke patients' balance, gait, and endurance, as well as to compare the effects of underwater gait training and land gait training. Methods: Subjects were randomly allocated into three groups. Underwater gait training group (n=10), land gait training group (n=9) and control group (n=9). The groups performed their respective programs as well as conventional physical therapy 3 times/week for 8 weeks. The patients were assessed before and after the experiment in terms of the Berg balance scale, characteristics of gait, and 6-minute walking test. Results: The beneficial effect perceived in the speed increase underwater gait training (UGT) group was significantly greater than in the groups who were trained with speed increase land gait training (LGT) group, and the control group regarding the following aspects: the Berg balance scale, the affected step length, the affected stride length, and the 6-minute walking test (p<0.05). The LGT group showed a more significant effect on the Berg balance scale, the affected step length, the affected stride length, and the 6-minute walking test (p<0.05), compared to the control group. Furthermore, the UGT group showed a significantly greater effect on the gait speed when compared to the control groupb (p<0.05). Conclusion: This study shows that progressive UGT is effective in improving balance, gait, and endurance in stroke patients. Therefore, we believe that progressive UGT may be used as a method for general physical therapy in patients with stroke.

The Effects of Toe Wedges on the Spatiotemporal Gait Parameters of Adolescents with Spastic Diplegic Cerebral Palsy (발가락 벌림 교정기가 청소년기 경직형 양하지 뇌성마비의 보행에 미치는 영향)

  • Jang, Jung-Jae;Jung, Sun-Hye;Kim, Myung-Jong;Song, Sun-Hae;Lee, Dong-Geon;Lee, Seung-Hoo;Jang, Na-Young;Choi, Ji-Won;Ha, Sun-Young;Ha, Shin-Ho;Hong, Soung-Kyun;Lee, Gyu-Chang
    • PNF and Movement
    • /
    • v.17 no.2
    • /
    • pp.237-243
    • /
    • 2019
  • Purpose: The purpose of the present study was to investigate the effects of toe wedges on the gait ability of adolescents with spastic diplegic cerebral palsy. Methods: Six adolescents with spastic diplegic cerebral palsy participated in this study. During the participants walked with- and without toe wedges, the gait ability was analyzed using the electronic walkway system. Gait parameters, including velocity, cadence, step length, stride length, single support time, and double support time, were collected and analyzed. Results: When the participants walked with toe wedges, there were significant improvements in gait velocity, cadence, and double support time compared to those without toe wedges (p<0.05). However, there were no significant differences in step length, stride length, and single support time. Conclusion: Toe wedges may have a positive effect on the gait ability of adolescents with spastic diplegic cerebral palsy. However, it is necessary to conduct high-quality studies to identify the effects of toe wedges.

The Effects of Ankle Mobilization with Movements on the Ankle Range of Motion, Balance, and Gait of Patients after Total Knee Arthroplasty (무릎관절 전치환술을 시행한 환자의 발목관절에 움직임을 동반한 관절가동술이 발목 관절가동범위, 균형, 보행에 미치는 영향)

  • Yoon, Jung-dae;Lee, Jae-nam
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • Background: The purpose of this study was conducted to investigate the effects of the ankle mobilization with movement (MWM) technique on ankle dorsiflexion range of motion (ROM), balance, and gait in patients who underwent total knee replacement (TKR). Methods: Thirty patients with knee osteoarthritis were recruited and randomly divided into two groups: the experimental group (EG; n=15) and the control group (CG; n=15). For five days a week for 3 weeks, participants in the EG were treated with the ankle MWM technique and traditional total knee replacement (TKR) exercise, and those in the CG only performed traditional TKR exercises. The dorsiflexion ROM, balance, and gait of the patients were before and after exercise. Results: Balance system SD was used compare changes in dynamic balance. Patients in the EG group showed statistically significant differences after the intervention (p<.05). In addition, there was a statistically significant difference in dynamic balance between the EG and CG groups after the intervention (p<.05). STT-IBS was used to compare changes in velocity, step length, stride length, and ankle dorsiflexion ROM. Patients in the EG group showed statistically significant differences after the intervention (p<.05). In addition, there was a statistically significant difference in the velocity, step length, stride length, and ankle dorsiflexion ROM between the EC and CG groups after the intervention (p<.05). Conclusion: Our results showed that applying the ankle MWM technique with traditional TKR exercises improved ankle dorsiflexion ROM, dynamic balance, and gait in patients.

Effects of a Newly Designed Pelvic Belt Orthosis on Functional Mobility of Adults with Post-Stroke Hemiparesis

  • Cho, Byeong-Mo;Zarayeneh, Neda;Suh, Sang C.
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.125-131
    • /
    • 2020
  • Purpose : Lower extremity orthoses have been used as conservative methods to recover gait of the stroke patients. The purpose of this study is to examine how newly designed pelvic belt orthosis can improve gait ability and dynamic balance of adults with Hemiparesis after stroke. Methods : 22 patients who had hemiparesis after stroke participated in this study. Two groups were randomly created by assigning 10 subjects to the experimental group and the rest of the 12 subjects to the control group. The control group was treated by conventional physical therapy and occupational therapy. Identical therapy protocols were used to treat the experimental group who were assigned to wear the pelvic belt orthosis during post measurement. This study has a group of independent variables including group, gender, age, height, MAS, lesion side, cause and a group of dependent variables including gait speed, cadence, step length, stride length, and dynamic balance. The GAITRite system was used to measure spatial-temporal gain parameters and the balance system SD to measure dynamic balance. The data was analyzed using R version 3.3.1. Random forest, boosting algorithm, and MANOVA test were conducted to determine the effects of independent variables on dependent variables. Results : This study has a group of independent variables including group, gender, age, height, MAS, lesion side, cause and a group of dependent variables including gait speed, cadence, step length, stride length, and dynamic balance. The independent variable "group" has the most important value, which is approximately 25.42 (%IncMSE) representing a value three times greater than the second important predictor "height." Conclusion : As a result of this research, the hypothesis is validated with conclusion that Pelvic Belt orthosis could be effectively used for improving gait ability and balance of the patients with post-stroke hemiparesis.

Differences in the Gait Pattern and Muscle Activity of the Lower Extremities during Forward and Backward Walking on Sand

  • Kwon, Chae-Won;Yun, Seong Ho;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.1
    • /
    • pp.45-50
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the spatiotemporal and kinematic gait parameters and muscle activity of the lower extremities between forward walking on sand (FWS) and backward walking on sand (BWS) in normal adults. Methods: This study was conducted on 13 healthy adults. Subjects performed FWS and BWS and the spatiotemporal and kinematic gait parameters of stride time, stride length, velocity, cadence, step length, stance, swing, double support, and hip range of motion (ROM), knee ROM were measured by a wearable inertial measurement unit system. In addition, the muscle activity of the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GA) was measured. Results: The stride length, stride velocity, cadence, and step length in the BWS were significantly lower than FWS (p<0.05), and stride time was significantly greater (p<0.05). However, there was no significant difference in the ratio of stance, swing, and double support between the two (p>0.05). The kinematic gait parameters, including hip and knee joint range of motion in BWS, were significantly lower than FWS (p<0.05). The muscle activity of the RF in BWS was significantly higher than FWS (p<0.05), but the muscle activity of the BF, TA, GA did not show any significant differences between the two movements (p>0.05). Conclusion: A strategy to increase stability by changing the gait parameters is used in BWS, and this study confirmed that BWS was a safe and effective movement to increase RF muscle activity without straining the joints. Therefore, BWS can be recommended for effective activation of the RF.

Effects of Gym-ball Exercise in Standing Position on Muscle Strength, Balance, Gait and Fall Efficacy in Stroke Patients (선 자세에서 짐볼 운동이 뇌졸중 환자의 근력, 균형, 보행 및 낙상 효능감에 미치는 효과)

  • Lim, Yun-Jeong;Kang, Soon-Hee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.1
    • /
    • pp.49-60
    • /
    • 2022
  • Purpose : The purpose of this study was to identify whether gym-ball exercise in standing position was an effective intervention for improving muscle strength, balance, gait, and fall efficacy in stroke patients. Methods : Twenty-four stroke patients were randomized into three groups: experimental group 1 (n=8), experimental group 2 (n=8), and control group (n=8). Experimental groups 1, 2 and the control group performed the gym-ball exercise in standing position, same exercise without a gym-ball, and general physical therapy for 4 weeks, five times a week in 30-minute sessions. Muscle strength, balance, gait, and fall efficacy were assessed using a handheld dynamometer, the Berg Balance Scale (BBS), the wearable BTS G-WALK® sensor, and the Korean version of the Falls Efficacy Scale (K-FES), before and after training, respectively. Comparisons within and between groups were analyzed using the Wilcoxon signed rank test, Kruskal Wallis H test, and Mann-Whitney U test. Bonferroni correction was performed when significant differences between groups were identified (p<.017, .05/3). Results : Regarding muscle strength, BBS score, cadence and FES-K were significantly improved after intervention in all three groups. The weight bearing rate, gait speed and step length in experimental group 1 and 2 were significantly improved after the intervention. The stride length in experimental group 1 were significantly improved after the intervention. Experimental group 1 had significantly improved BBS score and stride length after intervention than experimental group 2 and control group. Experimental group 1 and 2 improved muscle strength, weight bearing rate, and FES-K score more than the control group. Experimental group 1 showed significant improvement in cadence, gait speed, and step length after the intervention than control group. Conclusion : This study showed that exercise with gym-ball in standing position can be an effective intervention to improve balance and gait in stroke patients than the same exercise without gym-ball.

The Effects of Eccentric Training Applied to Calf Muscles on Muscle Tone, Muscle Strength and Gait of Patients with Chronic Stroke (만성 뇌졸중 환자의 종아리 근육에 적용한 편심성 훈련이 근긴장도와 근력 및 보행에 미치는 영향)

  • Ji-Hyun Bae;Young-Keun Woo;Yong-Wook Kim;Kyue-Nam Park
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.113-128
    • /
    • 2024
  • Purpose: This study aimed to investigate the effects of eccentric training applied to the calf muscles on muscle tone, muscle strength, and gait variables in patients with chronic stroke. Methods: Twenty-two participants were divided into experimental (n=12; eccentric training) and control (n=10; static stretching and stretching board) groups. The participants completed 30-minute physical therapy sessions five times a week for three weeks. Calf muscle tone, muscle strength, and gait variables were measured using MyotonPRO, a hand-held dynamometer, and Optogait, respectively, before and after each intervention. Results: Two-way analysis of variance (ANOVA) indicated a significant interaction effect between measurement points and groups in frequency, stiffness, and decrement of the lateral gastrocnemius, medial gastrocnemius, and soleus muscles (p<.05). Paired t-tests showed that the experimental group exhibited significantly decreased frequency and stiffness scores for the lateral gastrocnemius, medial gastrocnemius, and soleus muscles (p<.05), as well as significantly increased decrement and muscle strength scores, gait speed, step length, and stride length (p<.05). Conclusion: The application of eccentric training to the calf effectively reduced muscle tone, increased muscle strength, and improved the gait speed, step length, and stride length of patients with chronic stroke.

Design of Test Equipment for LSM Section Switching Test (장계자형 LSM 섹션전환용 시험장치 설계)

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Chang-Young;Cho, Ju-Hyun;Choi, Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2383-2388
    • /
    • 2011
  • LSMs are installed under girders along the long track. In order to improve the efficiency of the LSM, long stator LSM should be divided into the specified length and the propulsion inverters should have the system topology to generate high voltage and current for LSMs. This paper presents a system topology with two-step inverter in order to generate high voltage in inverter. A LSM propulsion system is developed and implemented in Maltab/Simulink. A system model of the two-step Inverter is applied to developed model. This paper demonstrates through simulation, advantages of multi-step inverter. The conclusions can serve the design of LSM propulsion system.

  • PDF

Natural Frequencies and Mode Shapes of Beams with Step Change in Cross-Section

  • Kim, Yong-C.;Nam, Alexander V.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.152-157
    • /
    • 2003
  • Natural frequencies of the transνerse vibration of beams with step change in cross-section are obtained by using the asymptotic closed form solution. This closed form solution is found by using WKB method under the assumption of slowly varying properties, such as mass, cross-section, tension etc., along the beam length. However, this solution is found to be still very accurate even in the case of large variation in cross-section and tension. Therefore, this result can be easily applied to many engineering problems.

  • PDF

System Design for LSM Section Switching Test (LSM 섹션전환시험을 위한 시스템 설계)

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Chang-Young;Shin, Seung-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1258-1259
    • /
    • 2011
  • LSMs are installed under girders along the long track. In order to improve the efficiency of the LSM, long stator LSM should be divided into the specified length and the propulsion inverters should have the system topology to generate high voltage and current for LSMs. This paper presents a system topology with two-step inverter in order to generate high voltage in inverter. A LSM propulsion system is developed and implemented in Maltab/Simulink. A system model of the two-step Inverter is applied to developed model. This paper demonstrates through simulation, advantages of multi-step inverter. The conclusions can serve the design of LSM propulsion system.

  • PDF