• Title/Summary/Keyword: Step height

Search Result 473, Processing Time 0.024 seconds

Flow Structure Around a Rectangular Prism Placed in a Thick Turbulent Boundary Layer (두꺼운 난류경계층 내부에 놓인 직사각형 프리즘 주위의 유동구조)

  • Kim, Gyeong-Cheon;Ji, Ho-Seong;Chu, Jae-Min;Lee, Seok-Ho;Seong, Seung-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.578-586
    • /
    • 2002
  • Flow structures around a rectangular prism have been investigated by using a PIV(Particle Image Velocimetry) technique. A thick turbulent boundary layer was generated by using spires arid roughness elements. The boundary layer thickness, displacement thickness and momentum thickness were 650mm, 117.4mm and 78mm, respectively. The ratio between the model height(40mm) and the boundary layer thickness H/$\delta$, was 0.06. The Reynolds number based on the free stream velocity and the height of the model was 7.9$\times$10$^3$. The PIV measurements were performed at three different wall normal planes. Three recirculation regions at forward facing step, top of the roof and backward facing step are clearly seen and show three dimensional features. Dramatic changes of flow patterns are observed in the wake regions in the different spanwise wall normal planes. Instead of reattachment and recirculation zone, rising streamlines are depicted at the normal planes near the side wall due to the interaction with a rising horse shoe vortex. The peak of turbulent kinetic energy occurs at the separation bubble on top of the roof and the magnitude is 2.5 times higher compared with that of the wake region.

Analysis of hair design formative factors in the women's one length hair style in the Imperial Japanese colonial period (일제 강점기 여성 단발의 헤어디자인 조형적 요소 분석)

  • Park, Jang-Soon
    • Journal of Digital Convergence
    • /
    • v.16 no.10
    • /
    • pp.479-484
    • /
    • 2018
  • This study is an attempt to analyze the changes and morphological analysis of the one length hair style of women in the Imperial Japanese colonial period, and the purpose of this study is to analyze the components of hair design such as shape, texture, and color based on the precedent and the book and to make possible various styles of one length hair style cut. From the results of this study, one length hair style showed the outline shape with no step height of cut length, natural hair texture and natural hair color in 1910s to 1920s. In the 1930s, the one length hair style showed a slight cut length step height and a slight discoloration using a diamond shape, a narrow wave of natural texture, hydrogen peroxide or oxygenated water. In the 1940s, one length hair style did not find any singularity to pursue brilliant beauty(美) in terms of form, texture, and color. This study may enable a deep and detailed follow up study on one length hair style, and will be a cornerstone for the development of basic data of hair beauty education and trend of new mode.

Development of Structural Analysis System of Bow Flare Structure(2) - Prediction of Wave Impact Load Area - (선수 구조부 구조해석 시스템 개발(2) - 파랑충격하중 면적의 추정 -)

  • S.G. Lee;J.W. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.87-94
    • /
    • 1999
  • Empirical design is still used to avoid a structural damage because impact phenomenon and structural behaviour due to wave impact load can not examined accurately. The damage due to wave impact load is largely affected by impact pressure impulse and impact load area. The objective of this study is, as the second step, to develop an efficient scantling program of bow flare structure, and to predict its impact load area by comparing maximum dented deformations at center of idealized panel structure model of bow flare structure of 300k DWT VLCC using LS/DYNA3D code, which will be used for its verification of dynamic structural analysis, as the next step. Through this study, the impact load area was estimated as $1.5s{\times}1.5s$ stiffener space(s) in the case of panel with stiffeners and as $2.5s{\times}2.5s$, with stringers, under impact pressure curve with peak height 6.5MPa, tail height 1.0MPa, and duration time 5.0msec.

  • PDF

Study on the Two-wavelength Digital Holography Using Double Fourier Transform (이중푸리에변환을 이용한 2 파장 디지털 홀로그래픽 연구)

  • Shin, Sang-Hoon;Jung, Won-Ki;Yu, Young-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.91-96
    • /
    • 2010
  • The size of a reconstructed image depends on the reconstruction distance and wavelength. The double fourier transform method is proposed to eliminate the dependence on the reconstruction distance and wavelength. We can get a fixed reconstructed image size by using the double fourier transform method. Two wavelength digital holography is proposed to measure the step height, which is larger than a single wavelength. The two image size of different wavelength holograms should be the same in order to apply two wavelength digital holography. We use two wavelength digital holography and double fourier transforms to measure the step height. The measured data were reasonable and we found that the double fourier transform is useful in two wavelength digital holography.

Kinematics Analysis of Lumbar Spine during Breathing in Lying Position (누운 자세에서 호흡에 따른 요추분절의 운동학적 분석)

  • Yuk, Goon-Chang;Park, So-Hyun;Kim, Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.5
    • /
    • pp.15-21
    • /
    • 2011
  • Purpose: The purpose of this study was to describe the influence of respiration on the segmental motion of the lumbar spine in the lying position. Methods: Twelve healthy females without a history of low back pain participated. Lumbosacral lordosis, intervertebral body angles, intervertebral body displacements, and anterior heights of the intervertebral disc of the lumbar spine were measured at inspiration, expiration and forced expiration in the supine and prone positions via fluoroscopy. Results: The results of lumbar kinematic analysis in the supine position according to respiration pattern were as follows. The L4/5 intervertebral body angle was significantly higher at forced expiration than at expiration (p<0.05). The L3/4 anterior height of the intervertebral disc was significantly higher at expiration than at forced inspiration and the L5/S1 anterior height of the intervertebral disc was significantly higher at inspiration than at forced expiration (p<0.05). There were no significant differences in the intervertebral body displacements and lumbosacral lordosis in the supine position (p>0.05). The results of lumbar kinematic analysis in the prone position according to respiration pattern were as follows. The L5/S1 anterior height of the intervertebral disc was significantly higher at inspiration than at forced expiration (p<0.05). However, there was no significant difference in the intervertebral body angle, the intervertebral body displacements, and the lumbosacral lordosis (p>0.05). Conclusion: These findings suggested that respiration can affect the intervertebral body angle and anterior height of the intervertebral disc in some segments. The results from this study serve as a step in the development of guidelines for lumbar kinematic analysis for lumbar breathing training.

Thermal stress analysis for an aspheric glass lens mold (비구면 유리 렌즈 금형의 열응력 해석)

  • Lee, Young-Min;Chang, Sung-Ho;Heo, Young-Moo;Shin, Kwang-Ho;Yoon, Gil-Sang;Jung, Tea-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.125-131
    • /
    • 2008
  • In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical GMP processes were developed with an eye to mass production of precision optical glass parts by molding press. Generally because the forming stage in a GMP process is operated at high temperature above $570^{\circ}C$, thermal stresses and deformations are generated in the aspheric glass lens mold that is used in GMP process. Thermal stresses and deformations have negative influences on the quality of a glass lens and mold, especially the height of the deformed glass lens will be different from the height of designed glass lens. To prevent the problems of a glass lens mold and the glass lens, it is very important that the thermal stresses and deformations of a glass lens mold at high forming temperature are considered at the glass molds design step. In this study as a fundamental study to develop the molds used in an aspheric glass lens fabrication, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally using analysis results, it was predicted the height of thermally deformed guide ring and calculated the height of the guide ring to be modified, $64.5{\mu}m$. This result was referred to design the glass lens molds for GMP process in production field.

A study on the construction of the quality prediction model by artificial neural intelligence through integrated learning of CAE-based data and experimental data in the injection molding process (사출성형공정에서 CAE 기반 품질 데이터와 실험 데이터의 통합 학습을 통한 인공지능 품질 예측 모델 구축에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.24-31
    • /
    • 2021
  • In this study, an artificial neural network model was constructed to convert CAE analysis data into similar experimental data. In the analysis and experiment, the injection molding data for 50 conditions were acquired through the design of experiment and random selection method. The injection molding conditions and the weight, height, and diameter of the product derived from CAE results were used as the input parameters for learning of the convert model. Also the product qualities of experimental results were used as the output parameters for learning of the convert model. The accuracy of the convert model showed RMSE values of 0.06g, 0.03mm, and 0.03mm in weight, height, and diameter, respectively. As the next step, additional randomly selected conditions were created and CAE analysis was performed. Then, the additional CAE analysis data were converted to similar experimental data through the conversion model. An artificial neural network model was constructed to predict the quality of injection molded product by using converted similar experimental data and injection molding experiment data. The injection molding conditions were used as input parameters for learning of the predicted model and weight, height, and diameter of the product were used as output parameters for learning. As a result of evaluating the performance of the prediction model, the predicted weight, height, and diameter showed RMSE values of 0.11g, 0.03mm, and 0.05mm and in terms of quality criteria of the target product, all of them showed accurate results satisfying the criteria range.

Experimental Study on the Determination of Slope and Height of Curbs Considering the VRUs (교통약자를 고려한 보도의 경사도와 높이 결정을 위한 실험연구)

  • Kim, Hyunjin;Lim, Joonbeom;Choe, Byongho;Oh, Cheol;Kang, Inhyeng
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.107-115
    • /
    • 2018
  • PURPOSES : As the population of the mobility handicapped, who are classified as the disabled, the elderly, pregnant women, children, etc., has increased, the voices for guaranteeing their rights have been increasing as well. Thus, the design manuals for roads and sidewalks for the mobility handicapped were developed by the local government, such as the Ministry of Land, Transport, and Tourism, in Seoul City. However, according to the 2013 survey results of the Seoul Metropolitan City, the mobility handicapped still feel uncomfortable with the sidewalks, and particularly request for the improvement of the step and slope of the sidewalk curb. Therefore, in this study, we conducted an empirical experimental study to determine the slope of the sidewalk curb and height of the steps considering the mobility handicapped and analyzed whether there is a statistically significant difference. METHODS : The methodology of this study is an empirical experimental one. In the study, five non-disabled people, 10 wheelchair users, and 10 eye patch and stick users walked about 2-3 min on the sidewalk plates of the sloped type (0%, 5%, 6.3%, 8.3%) and stepped type (0 cm, 1 cm, 3 cm, 6 cm), and their human physiological responses, such as the skin temperature, volume of perspiration on forehead and chest, and heart rate, were measured and recorded. After combining the data, we conducted a nonparametric test, ANOVA, or t-test to determine whether there was a statistically significant difference according to each slope and step type. RESULTS : It was found that for the non-disabled, there was no significant difference in human physiological responses according to the slope and steps of the sidewalk. It can be said that the non-disabled do not feel much physiological discomfort while walking. In the case of the sloped sidewalk plate, the heart rate of the wheel chair users increased when the slope was 6.3%. In the case of the eye patch and stick users, the volume of perspiration on the chest increased at a slope of 5.0%. In general, it is judged that a sidewalk with a slope that is less than 5% does not cause a change in the physiological response. In the case of a stepped sidewalk plate, when 0 cm, 1 cm, and 3 cm were compared for wheelchair users, the amount of forehead perspiration increased from 1 cm. Meanwhile, in the case of the eye patch and stick users, when 0 cm and 6 cm were compared, the amount of perspiration on the forehead and chest as well as the heart rate all increased at 6 cm. Taken together, in the case of wheelchair users, a difference was shown when the height of the step of the sidewalk plate was 1 cm, suggesting that installing it at 0 cm does not cause any physiological discomfort. Moreover, in the case of the eye patch and stick users, when comparing only 0 cm and 6 cm, 0 cm was considered to be suitable, as there was a difference in physiological response at 6 cm. CONCLUSIONS : In this study, we set the human physiological responses such as chest skin temperature, amount of perspiration, and heart rate as evaluation items, and our study was considered to be a meaningful experiment that targeted wheelchair users as well as eye patch and stick users. The validity of the evaluation items was confirmed, as the results of human physiological responses were significant. As for the sidewalk design, according to the experiment result, it is considered that differential application should be implemented according to the type of mobility handicap, rather than uniformly applying a sidewalk step of 2 cm and sidewalk slope of 1/25, which are the current legal standards.

Effect of Tiger Step on Lower Extremities during Uphill Walking (오르막보행 시 타이거스텝 하지 움직임에 미치는 영향)

  • Kang, Jihyuk;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2022
  • Objective: The aim of this study was to investigate the effect Tiger-step walking on the movement of the lower extremities during walking. Method: Twenty healthy male adults who had no experience of musculoskeletal injuries on lower extremities in the last six months (age: 26.85 ± 3.28 yrs, height: 174.6 ± 3.72 cm, weight: 73.65 ± 7.48 kg) participated in this study. In this study, 7-segments whole-body model (pelvis, both side of thigh, shank and foot) was used and 29 reflective markers and cluster were attached to the body to identify the segments during the gait. A 3-dimensional motion analysis with 8 infrared cameras and 7 channeled EMG was performed to find the effect of tigerstep on uphill walking. To verify the tigerstep effect, a one-way ANOVA with a repeated measure was used and the statistical significance level was set at α=.05. Results: Firstly, Both Tiger-steps showed a significant increase in stance time and stride length compared with normal walking (p<.05), while both Tiger-steps shown significantly reduced cadence compared to normal walking (p<.05). Secondly, both Tiger-steps revealed significantly increased in hip and ankle joint range of motion compared with normal walking at all planes (p<.05). On the other hand, both Tiger-steps showed significantly increased knee joint range of motion compared with normal walking at the frontal and transverse planes (p<.05). Lastly, Gluteus maximus, biceps femoris, medial gastrocnemius, tibialis anterior of both tiger-step revealed significantly increased muscle activation compared with normal walking in gait cycle and stance phase (p<.05). On the other hand, in swing phase, the muscle activity of the vastus medialis, biceps femoris, tibialis anterior of both tiger-step significantly increased compared with those of normal walking (p <.05). Conclusion: As a result of this study, Tiger step revealed increased in 3d range of motion of lower extremity joints as well as the muscle activities associated with range of motion. These findings were evaluated as an increase in stride length, which is essential for efficient walking. Therefore, the finding of this study prove the effectiveness of the tiger step when walking uphill, and it is thought that it will help develop a more efficient tiger step in the future, which has not been scientifically proven.

Adaptive face Region Extraction Based on Skin Color Information and Projection (피부색 정보와 투영 기법에 기반한 적응적 얼굴 영역 추출)

  • Lim Ju-Hyuk;Bae Sung-Ho;Song Kun-Woen
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.5
    • /
    • pp.633-640
    • /
    • 2005
  • In this paper, we propose an adaptive face region extraction algorithm based on skin color information. It consists oi the extraction of face candidate region and projection step. In the step of face candidate region extraction, we extract the pixels which are regarded as the candidate skin color pixels by using the given range. Then, the ratio between the total pixels and the extracted pixels is calculated. According to the ratio, we adaptively decide the range of the skin color and extract face candidate region. In the projection step, we project the extracted face candidate region into vertical direction to estimate the width of the face. Then the redundant parts are efficiently removed by using the estimated face width. And the extracted face width information is used at the horizontal projection step to extract the height of the face. From the experiment results for the various images, the proposed algorithm shows more accurate results than the conventional algorithm.

  • PDF