• Title/Summary/Keyword: Step cooling

Search Result 196, Processing Time 0.027 seconds

Separate Type Rotary Engine Cycle Analysis (분리형 로터리엔진 사이클 해석)

  • Ki, Dockjong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.104-111
    • /
    • 2019
  • A separate type rotary engine consisting of a compressor and an expander is under development. The engine motoring, compressor pressure, and fuel combustion have been tested with the initial prototype for operability checks of the mechanism. This paper describes an engine cycle analysis method designed specifically for this new-concept engine. The unique operational mechanism of the engine and the thermodynamic properties of each step of air intake, compression, filling of combustion chamber, combustion, expansion and exhaust were analyzed. The cycle efficiencies of this engine according to various engine design parameters as well as the cooling effect of compressed air between the compressor and expander can be easily calculated with this method; further, some case studies are presented in this paper.

Microstructural modeling of two-way bent shape change of composite two-layer beam comprising a shape memory alloy and elastoplastic layers

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.;Volkova, Natalia A.;Vukolov, Egor A.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.245-253
    • /
    • 2022
  • A two-layer beam consisting of an elastoplastic layer and a functional layer made of shape memory alloy (SMA) TiNi is considered. Constitutive relations for SMA are set by a microstructural model capable to calculate strain increment produced by arbitrary increments of stress and temperature. This model exploits the approximation of small strains. The equations to calculate the variations of the strain and the internal variables are based on the experimentally registered temperature kinetics of the martensitic transformations with an account of the crystallographic features of the transformation and the laws of equilibrium thermodynamics. Stress and phase distributions over the beam height are calculated by steps, by solving on each step the boundary-value problem for given increments of the bending moment (or curvature) and the tensile force (or relative elongation). Simplifying Bernoulli's hypotheses are applied. The temperature is considered homogeneous. The first stage of the numerical experiment is modeling of preliminary deformation of the beam by bending or stretching at a temperature corresponding to the martensitic state of the SMA layer. The second stage simulates heating and subsequent cooling across the temperature interval of the martensitic transformation. The curvature variation depends both on the total thickness of the beam and on the ratio of the layer's thicknesses.

Drift Test Method of Meteorological Instrument for Type Approval (형식승인을 위한 측기의 드리프트 검사 방법)

  • Seo, Dae-Il;Lee, Kyung-Hun;Kwon, Byung-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.927-932
    • /
    • 2022
  • Instrument drift is caused by the passage of time, environmental changes, normal wear and tear, debris buildup, sudden shock, vibrations, electromagnetic fields, and improper use. Since it is inappropriate to directly determine the change of the output value as drift during the limited test period, a new algorithm that reflects both zero drift and span drift by giving changes over time to the calibration method of the instrument was proposed. The temperature drift was calculated to be 0.49% for about 60 minutes at 1-minute intervals in the nine-step constant temperature environment through the warming and cooling process.

Contact Element Generation Method for Casting Analysis by using Projection Method (Projection Method에 의한 주조 해석용 접촉 요소망 생성 기법)

  • Nam, Jeong-Ho;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.40 no.6
    • /
    • pp.146-150
    • /
    • 2020
  • In general, hot metal castings contract and molds expand during the cooling step of a casting process. Therefore, it is important to consider both the casting and mold at the same time in a casting process analysis. For a more accurate analysis that includes the contact characteristics, matching each node of the casting and mold in the contact area is recommended. However, it is very difficult to match the nodes of the casting and the mold when generating elements due to the geometric problem of CAD model data. The present study proposes a mesh generation technique that considers mechanical contact between the casting and the mold in a casting analysis (finite element analysis). The technique focuses on the fact that the mold surrounds the casting. After generating the 3D elements for the casting, the surface elements of the casting in contact with the mold are projected inside the mold to create contact elements that coincide with the contact surface of the casting. It was confirmed that high-quality contact element information and a 3D element net can be automatically generated by the method proposed in this study.

A Study on the Stretch-flangeability of Hot-Rolled High Strength Steel with Ferrite-Bainite Duplex Microstructure (페라이트-베이나이트 복합조직 고강도 열연강판의 신장플랜지 특성에 관한 연구)

  • Cho, Yeol-Rae;Chung, Jin-Hwan;Koo, Hwang-Hoe;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1252-1262
    • /
    • 1999
  • The effect of microstructures on the strength-flangeability of Nb bearing hot-rolled high strength steel was investigated in order to improve the strength-flangeability of conventional TS 580MPa grades HSLA steel for the automotive wheel disc. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling was effective to produce the Nb-bearing high strength steel with the polygonal ferrite and bainite duplex microstructures. It was suggested that the suppressed precipitation of grain boundary cementites and the decreased hardness difference between ferrite matrix and bainite cause the excellent stretch-flangeability of ferrite-bainite duplex microstructure steel. Therefore, the formation and propagation of microcracks were suppressed relative to the conventional HSLA steel with ferrite and pearlite microstructure. In addition, the elongation was improved as compared with that of hot-rolled steel sheets using conventional early cooling pattern because the volume fraction of polygonal ferrite was increased.

  • PDF

Flow Measurement and Characteristic Analysis in the Effluent Regions of the Samcheonpo Thermal Power Plant(TPP) (삼천포 화력발전소 방류수로 및 방류해역의 흐름 관측 및 특성분석)

  • Cho, Hong-Yeon;Jeong, Shin-Taek;Kang, Keum-Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.329-337
    • /
    • 2006
  • A small hydro-power plant operated by cooling water discharged from the power plant is under construction. In this study, the flow characteristics of the effluent channel and the outfall coastal zone in which the facilities are constructed have been measured and analysed. The flow pattern is highly dependent on the effluent discharge and clearly classified as these typical areas; the upstream and downstream areas of the weir, and the outfall coastal zone. The discharge and the width of the channel in the upstream area of the weir are increased step by step, so the water level fluctuation is small. The flow overtopping the weir is rapidly changing and has highly vertical fluctuation patterns after hydraulic jump just below the weir. The flow pattern in the outfall zone is directed toward the seaward direction and the velocity is dominated by the tidal level fluctuation. The mean tidal range in this area is about 10% greater than that of the Tongyeong tidal gauging station and the wave effects are negligible because of the sheltering effects of this area.

Experimental Study on the Control Characteristics of Each Channel in a Semiconductor Chiller (반도체 공정용 칠러의 채널별 제어특성에 관한 실험적 연구)

  • Kim, Hyeon-Joong;Kwon, Oh-Kyung;Cha, Dong-An;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1285-1292
    • /
    • 2011
  • The characteristics of a semiconductor chiller system with EEV have been experimentally studied. Three experiments on temperature changes (increase and decrease), load variation, and control precision were conducted to investigate the operating characteristics of the semiconductor chiller. The power consumption was 8.9 kW during increase in temperature. The required time was 37.5 min for CH1 and 39.5 min for CH2. Moreover, the time required for falling temperature was 26.5 min. The control precision for partial load operation was relatively low compared to that of a full load operation. In addition, the CH2 equipped with a step motor showed better control precision. The power consumed by the chiller for process cooling water was 1.8 kW, which was one-half of that consumed during the refrigeration cycle. The objective of this study is to provide an optimal control guideline for the semiconductor chiller design.

Characteristics of Temperature Control by Hot-gas Bypass Flow Rate on Industrial Water Cooler (핫가스 바이패스 유량에 따른 산업용 냉각기의 온도제어 특성)

  • Baek, Seung-Moon;Choi, Jun-Hyuk;Byun, Jong-Yeong;Moon, Choon-Geun;Lee, Ho-Saeng;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1129-1136
    • /
    • 2009
  • The paper presents the performance characteristics for a cooling system using EEV. The water cooler was used to reduce thermal deformation and contraction due to high speed of machine tools and the EEV was used for capacity control for water cooler. The apparatus was designed for hot-gas bypass system which a hot-gas can flows from outlet of compressor to the inlet of evaporator. This experiment is the intermediary study for precise temperature control through PID control. The results show that the evaporator pressure increased and refrigeration capacity decreased as the EEV opening step of hot-gas bypass increased. These results can be used as basic data for the design of effective water cooler.

Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

  • Kim, Nam In;Kim, Young Sik;Kim, Kyung Soo;Chang, Hyun Young;Park, Heung Bae;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001~0.075% were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel.

Design of Data Warehouse System for Reducing Defect Rate in Automotive Pulley Manufacturing Process (자동차 풀리 제조공정의 불량률 감소를 위한 데이터 웨어하우스 구조 설계)

  • Lee G.B.;Kim B.H.;Oh B.H.;Ju I.S.;Jang J.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.133-138
    • /
    • 2005
  • Automotive pulleys play a key role in driving the cooling pump, oil pump, air-conditioner and so on by using an engine power. Researches on design processes and technologies of the pulleys can be found in many literatures. On the other hand, the areas related to manufacturing processes of the pulleys have been treated negligently. Vast data extracted from various information systems are transformed, integrated, and summarized to become a special database for helping users make a decision. The database, namely the data warehouse has been popularly used in the marketing and customer management of enterprises and recently applied to improve the design and manufacturing processes. In this study the manufacturing process of pulleys were analyzed through the intensive investigation of shop-floors and the interviews with workers and managers. The defects generated during a manufacturing process were categorized in a few types and the causes of defects examined for extracting the dominant parameters in the setup process for producing pulleys. As the first step to construct the data warehouse for the manufacturing processes of pulleys, authors proposed its architecture focused on the reduction of defect rate during the setup process.

  • PDF