• Title/Summary/Keyword: Step Response Model

Search Result 369, Processing Time 0.025 seconds

Theoretical Analysis and Study of Design of Autothermal Reformer for Use in Fuel Cell (연료전지용 열분해 개질기의 이론해석 및 설계연구)

  • Kang, Il-Hwan;Kim, Hyung-Man;Choi, Kap-Seung;Wang, Hak-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.58-63
    • /
    • 2005
  • As fuel cells approach commercialization, hydrogen production becomes a critical step in the overall energy conversion pathway. Reforming is a process that produces a hydrogen-rich gas from hydrocarbon fuels. Hydrogen production via autothermal reforming (ATR) is particularly attractive for applications that demand a quick start-up and response time in a compact size. However, further research is required to optimize the performance of autothermal reformers and accurate models of reactor performance must be developed and validated. The design includes the requirement of accommodating a wide range of experimental set ups. Factors considered in the design of the reformer are capability to use multiple fuels, ability to vary stoichiometry, precise temperature and pressure control, implementation of enhancement methods, capability to implement variable catalyst positions and catalyst arrangement, ability to monitor and change reactant mixing, and proper implementation of data acquisition. A model of the system was first developed in order to calculate flowrates, heating, space velocity, and other important parameters needed to select the hardware that comprises the reformer. Predicted performance will be compared to actual data once the reformer construction is completed. This comparison will quantify the accuracy of the model and should point to areas where further model development is required. The end result will be a research tool that allows engineers to optimize hydrogen production via autothermal reformation.

  • PDF

Theoretical Analyses of Autothermal Reforming Methanol for Use in Fuel Cell

  • Wang Hak-Min;Choi Kap-Seung;Kang Il-Hwan;Kim Hyung-Man;Erickson Paul A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.864-873
    • /
    • 2006
  • As fuel cells approach commercialization, hydrogen production becomes a critical step in the overall energy conversion pathway. Reforming is a process that produces a hydrogen-rich gas from hydrocarbon fuels. Hydrogen production via autothermal reforming (ATR) is particularly attractive for applications that demand a quick start-up and response time in a compact size. However, further research is required to optimize the performance of autothermal reformers and accurate models of reactor performance must be developed and validated. The design includes the requirement of accommodating a wide range of experimental set ups. Factors considered in the design of the reformer are capability to use multiple fuels, ability to vary stoichiometry, precise temperature and pressure control, implementation of enhancement methods, capability to implement variable catalyst positions and catalyst arrangement, ability to monitor and change reactant mixing, and proper implementation of data acquisition. A model of the system was first developed in order to calculate flowrates, heating, space velocity, and other important parameters needed to select the hardware that comprises the reformer. Predicted performance will be compared to actual data once the reformer construction is completed. This comparison will quantify the accuracy of the model and should point to areas where further model development is required. The end result will be a research tool that allows engineers to optimize hydrogen production via autothermal reformation.

Model predictive control strategies for protection of structures during earthquakes

  • Xu, Long-He;Li, Zhong-Xian
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.233-243
    • /
    • 2011
  • This paper presents a theoretical study of a model predictive control (MPC) strategy employed in semi-active control system with magnetorheological (MR) dampers to reduce the responses of seismically excited structures. The MPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an objective function, which can compensate for the effect of time delay that occurred in real application. As an example, a 5-story building frame equipped with two 20 kN MR dampers is presented to demonstrate the performance of the proposed MPC scheme for addressing time delay and reducing the structural responses under different earthquakes, in which the predictive length l = 5 and the delayed time step d = 10, 20, 40, 60, 100 are considered. Comparison with passive-off, passive-on, and linear quadratic Gaussian (LQG) control strategy indicates that MPC scheme exhibits good control performance similar to the LQG control strategy, both have better control effectiveness than two passive control methods for most cases, and the MPC scheme used in semi-active control system show more effectiveness and robustness for addressing time delay and protecting structures during earthquakes.

Force Tracking Control of a Smart Flexible Gripper Featuring Piezoceramic Actuators (압전 세라믹 작동기로 구성된 스마트 유연 그리퍼의 힘 추적 제어)

  • Choi, Seung-Bok;Cheong, Chae-Cheon;Lee, Chul-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.174-184
    • /
    • 1997
  • This paper presents a robust force tracking control of a smart flexible gripper featured by a piezoceramic actuator characterizing its durability and quick response time. A mathematical governing equation for the proposed gripper structure is derived by employing Hamilton's principle and a state space control model is subsequently obtained through model analysis. Uncertain system parameters such as frequency variation are included in the control model. A sliding mode control theory which has inherent robustness to the sys- tem uncertainties is adopted to design a force tracking controller for the piezoceramic actuator. Using out- put information from the tip force sensor, a full-order observer is constructed to estimate state variables of the system. Force tracking performances for desired trajectories represented by sinusoidal and step func- tions are evaluated by undertaking both simulation and experimental works. In addition, in order to illustrate practical feasibility of the proposed method, a two-fingered gripper is constructed and its performance is demonstrated by showing a capability of holding an object.

  • PDF

Development of a Toroidal CVT Controller for Agricultural Tractor (II) - PID controller - (트랙터용 토로이달 무단변속기 제어시스템 개발(II) - PID 콘트롤러 개발 -)

  • Kim H. J.;Ryu K. H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.407-418
    • /
    • 2004
  • There are several different types of continuously variable transmission(CVT) such as toroidal drive, belt drive, hydrostatic drive, hydro-mechanical drive. The toroidal CVT is an alternative to the manual transmission, HST, power-shift gear trans-missions or other CVTs. The driver of the CVT tractor doesn't have to operate a shia lever since the CVT controller automatically controls the speed of tractor. Thus, it is much easier to operate the CVT tractor. The fuel efficiency of CVT tractor can be increased since the controller responds quickly to the change in external load on the wheel during field operation. This study was conducted to develop the hardwares and softwares for the toroidal CVT controller which control the variator and the range clutches. The hardware consisted of a measurement system, hydraulic system and computer. And the PID controller was developed using the simulation model of the CVT control system. Through the simulation, the control coefficients for the PID controller were selected. Finally, the performance of the CVT control system was evaluated by step response test and torque response test. The settling time of the CVT control system appeared to be fast enough for field operations.

Nonlinear Dynamic Analysis of Space Truss by Using Multistage Homotopy Perturbation Method (시분할구간 호모토피 섭동법을 이용한 공간 트러스의 비선형 동적 해석)

  • Shon, Su-Deok;Ha, Jun-Hong;Lee, Seung-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.879-888
    • /
    • 2012
  • This study aims to apply multistage homotopy perturbation method(MHPM) to space truss composed of discrete members to obtain a semi-analytical solution. For the purpose of this research, a nonlinear governing equation of the structures is formulated in consideration of geometrical nonlinearity, and homotopy equation is derived. The result of carrying out dynamic analysis on a simple model is compared to a numerical method of 4th order Runge-Kutta method(RK4), and the dynamic response by MHPM concurs with the numerical result. Besides, the displacement response and attractor in the phase space is able to delineate dynamic snapping properties under step excitations and the responses of damped system are reflected well the reduction effect of the displacement.

A CSP based Learner Tailoring Question Recommendation Process using Item Response Theory (문항반응이론을 이용한 CSP 기반의 학습자 중심 문제추천 프로세스)

  • Jeong, Hwa-Young
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.145-152
    • /
    • 2009
  • Applications such as study guides and adaptive tutoring must rely on a fine grained student model to tailor their interaction with the user. They are useful for Computer Adaptive Testing (CAT), for example, where the test items can be administered in order to maximize the information. I study how to design learner tailoring question process for recommendation. And this process can be applied the CAT and I use the formal language such as CSP in each process development for efficient process design. I use the item difficulty of item response theory for question recommendation process and learner can choice the difficulty step for learning change to control the difficulty of question in next learning. Finally, this method displayed the structural difference to compare between existent and this process.

  • PDF

A Combined Procedure of RSM and LHS for Uncertainty Analyses of CsI Release Fraction Under a Hypothetical Severe Accident Sequence of Station Blackout at Younggwang Nuclear Power Plant Using MAAP3.0B Code

  • Han, Seok-Jung;Tak, Nam-Il;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.507-521
    • /
    • 1996
  • Quantification of uncertainties in the source term estimations by a large computer code, such as MELCOR and MAAP, is an essential process of the current Probabilistic safety assessment. The main objective of the present study is to investigate the applicability of a combined procedure of the response surface method (RSM) based on input determined from a statistical design and the Latin hypercube sampling (LHS) technique for the uncertainty analysis of CsI release fractions under a Hypothetical severe accident sequence of a station blackout at Younggwang nuclear power plant using MAAP3. OB code as a benchmark problem. On the basis of the results obtained in the present work, the RSM is recommended to be used as a principal tool for an overall uncertainty analysis in source term quantifications, while using the LHS in the calculations of standardized regression coefficients (SRC) and standardized rank regression coefficient (SRRC) to determine the subset of the most important input parameters in the final screening step and to check the cumulative distribution functions obtained by RSM. Verification of the response surface model for its sufficient accuracy is a prerequisite for the reliability of the final results that can be obtained by the combined procedure proposed in the present work.

  • PDF

Development and Application of Blended Learning Strategy for Collaborative Learning (협력학습을 위한 혼합학습 전략 개발 및 적용)

  • Ku, Jin-Hui;Choi, Won-Sik
    • 대한공업교육학회지
    • /
    • v.34 no.2
    • /
    • pp.267-285
    • /
    • 2009
  • The collaborative learning has been considered as an efficient teaching model and under the recent basic learning environment, even face-to-face classroom circumstance rapidly increases the courses of blended learning which utilize the merits of e-learning environment. Nonetheless, the study on the strategy for systematic blended learning is quite scarce. In this study, the survey was done for developing the blended learning strategy, based on the collaborative learning model at the face-to-face environment and judging the satisfaction on the courses which the model was applied to. The survey consists of demographic questions, satisfaction in the whole courses, satisfaction in the collaborative learning under the blended learning environment and satisfaction in the blended learning strategy and support tools applied to each step of the learning. The result of this study is as follows. First, in response to the question that the blended learning can complement the face-to-face classroom courses, the respondents represented average 4.09 at 5-point Likert scale. And to the question whether the collaborative learning is more efficient under the blended learning environment than the face-to-face classroom, the response corresponds to 4.06 scale on the average. Second, as for the satisfaction in the blended learning strategy and support tools applied to the each step of the blended learning, the satisfaction degree is analyzed as high as over 4.0 on the average toward all the questions. Third, regarding the support tools used for the blended learning strategy, the learners consider the tools as most helpful in order of chatting, team community, mail & note and archive. Lastly, I would like to suggest that the study result should be highly reflected in constructing the collaborative learning module of learning control system in the future.

DTLS-based CoAP Security Mechanism Analysis and Performance Evaluation (DTLS 기반의 CoAP 보안 메커니즘 분석 및 성능평가)

  • Han, Sang woo;Park, Chang seop;Cho, Jung mo
    • Convergence Security Journal
    • /
    • v.17 no.5
    • /
    • pp.3-10
    • /
    • 2017
  • Standard Protocol Optimized for Resource-Constrained IoT Environment Constrained Application Protocol (CoAP) supports web-based communication between a sensor node in the IoT environment and a client on the Internet. The CoAP is a Request / Response model that responds to the client's CoAP Request message by responding with a CoAP Response message from the server. CoAP recommends the use of CoAP-DTLS for message protection. However, validation of the use of DTLS in the IoT environment is underway. We analyze CoAP and DTLS security mode, evaluate performance of secure channel creation time, security channel creation step time, and RAM / ROM consumption through Cooja simulator and evaluate the possibility of real environment application.