• Title/Summary/Keyword: Step Parameter

Search Result 694, Processing Time 0.029 seconds

Mathematical Model for In-Ward Nursing Staffing Optimization Based on Patient Classification System (환자 분류에 기초하여 입원병동의 적정 간호인력을 산정하는 모델)

  • Kim, Kyoung-Ok;Park, Mi-Jung;Lee, In-Kwang;Park, Kyung-Soon;Shon, Ho-Sun;Kim, Kyung-Ah;Seo, Chang-Jin;Cha, Eun-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.75-83
    • /
    • 2016
  • Nursing staffing is of major interest in hospital management, however, no practical method has been developed. The present study proposed a mathematical model based on the patient classification system for nursing staffing optimization. A few characteristic parameters possibly determined experimentally and/or empirically were introduced followed by systematic calculation of the required number of nurses. An essential concept of the model is the unit work load defined as the amount of nursing work performed on single patient per unit time, where the work load is defined as the number of nursing staffs multiplied by the working hours. The unit work load was considered to vary with the patient classification level as well as the working time during a day, both of which were represented by corresponding parameter values. The number of patients for each class and the number of working hours were multiplied to the unit work load, and added up to obtain the total required work load. As the next step, the averaged number of hours that a nurse could provide per day was formulated considering the degree of nursing practice experience into 3 levels. Finally, the appropriate number of nursing staffs was calculated as the total work load divided by the average working hours per nurse. The present technique has a great advantage that the number of nursing staffs to fulfill the required work load is systematically calculated once the characteristic parameters are appropriately determined, leading to instant and fast evaluation. A practical PC program was also developed to apply the present model to nursing practice.

A Decade's Experiences on the Hydrofracturing In-Situ Stress Measurement for Tunnel Construction in Korea (암반터널 설계를 위한 수압파쇄 초기지압 측정의 10여년 간의 경험)

  • Choe, Seong-Ung;Park, Chan;Sin, Jung-Ho;Sin, Hui-Sun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.03a
    • /
    • pp.79-88
    • /
    • 2008
  • Since the hydraulic fracturing field testing method was introduced first to Korean geotechnical engineers in 1994, there have been lots of progresses in a hardware system as well as an interpretation tool. The hydrofracturing system of first generation was the pipe-line type, so it was not easy to handle. It had been modified to a wire-line system at their second generation. It was more compact one but it also needed an additional air-compressor. Our current system is much more compact and operated by all-in-one system, so it doesn't need an additional air-compressor. With a progress in a hardware system, the software for analyzing the in-situ stress regime has also been progressed. For example, the shut-in pressure, which is the most ambiguous parameter to be obtained from hydrofracturing pressure curves, can now be acquired automatically from the various methods. While the hardware and software for hydrofracturing tests are being developed during the last decade, the author could accumulate the field test results which can cover the almost whole area of South Korea. Currently these field data are used widely in a feasibility study or a preliminary design step for tunnel construction in Korea. Regarding the difficulties in a site selection and a test performance for the in-situ stress measurement at an off-shore area, the in-situ stress regime obtained from the field experiences in the land area can be used indirectly for the design of a sub-sea tunnel. From the hydrofracturing stress measurements, the trend of magnitude and direction of in-situ stress field was shown identically with the geological information in Korea.

  • PDF

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF

Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms (최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법)

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

Theoretical and Empirical Issues in Conducting an Economic Analysis of Damage in Price-Fixing Litigation: Application to a Transportation Fuel Market (담합관련 손해배상 소송의 경제분석에서 고려해야 할 이론 및 실증적 쟁점: 수송용 연료시장에의 적용)

  • Moon, Choon-Geol
    • Environmental and Resource Economics Review
    • /
    • v.23 no.2
    • /
    • pp.187-224
    • /
    • 2014
  • We present key issues to consider in estimating damages from price-fixing cases and then apply the procedure addressing those issues to a transportation fuel market. Among the five methods of overcharge calculation, the regression analysis incorporating the yardstick method is the best. If the price equation relates the domestic price to the foreign price and the exchange rate as in the transportation fuel market, the functional form satisfying both logical consistency and modeling flexibility is the log-log functional form. If the data under analysis is of time series in nature, then the ARDL model should be the base model for each market and the regression analysis incorporating the yardstick method combines these ARDL equations to account for inter-market correlation and arrange constant terms and collusion-period dummies across component equations appropriately so as to identify the overcharge parameter. We propose a two-step test for the benchmarked market: (a) conduct market-by-market Spearman or Kendall test for randomness of the individual market price series first and (b) then conduct across-market Friedman test for homogeneity of the market price series. Statistical significance is the minimal requirement to establish the alleged proposition in the world of uncertainty. Between the sensitivity analysis and the model selection process for the best fitting model, the latter is far more important in the economic analysis of damage in price-fixing litigation. We applied our framework to a transportation fuel market and could not reject the null hypothesis of no overcharge.

An Influence of Accounting Information Education Characteristics on the Psychological Capital and Flow in Digital Convergence Society (디지털 컨버전스 사회에서 AI교육 특성변수가 심리적 자본과 플로워에 미치는 영향)

  • Lee, Shin-Nam
    • Journal of Digital Convergence
    • /
    • v.14 no.4
    • /
    • pp.139-147
    • /
    • 2016
  • The purpose of this study is to identify the relationships between AI education characteristics and psychological capital, psychological capital and flow, AI characteristics and flow through meditating effect of psychological capital in the digital convergence society. There are three AI characteristics: correctness, usefulness, easy of use. This empirical study was examined by 282 questionnaires to the three universities that teach accounting information system. It was performed by three-step method of the hierarchical regression analysis for the multiple regression analysis and parameter using the SPSS 22.0. The results and implications by analysis are as follows. First, AI characteristics and psychological capital have statistically significant positive influence. From AI attribute, correctness was established as the most important element. Second, psychological capital positively(+) influences flow. It allowed for the developed in flow. Third, psychological capital was shown as the major meditative variable between AI characteristics and flow. Through these, this paper suggests to reinforce self-efficacy, hope, resilience, optimism.

Characteristics of Isotherm, Kinetic, and Thermodynamic Parameters for Reactive Blue 4 Dye Adsorption by Activated Carbon (활성탄에 의한 Reactive Blue 4 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.122-130
    • /
    • 2020
  • The isotherm, kinetic, and thermodynamic parameters of reactive blue 4 adsorbed by activated carbon were investigated for activated carbon dose, pH, initial concentration, contact time, and temperature data. The adsorption of the RB 4 dye by activated carbon showed a concave shape in which the percentage of adsorption increased in both directions starting from pH 7. The isothermal adsorption data were applied to Langmuir, Freundlich, and Temkin isotherms. Both Freundlich and Langmuir isothermal adsorption models fit well. From determined Freundlich separation factor (1/n = 0.125 ~ 0.232) and Langmuir separation factor (RL = 1.53 ~ 1.59), adsorption of RB 4 by activated carbon could be employed as an effective treatment method. The constant related to the adsorption heat (BT = 2.147 ~ 2.562 J mol-1) of Temkin showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo second order model with good agreement. The results of the intraparticle diffusion model showed that the inclination of the first straight line representing the surface diffusion was smaller than that of the second straight line representing the intraparticle pore diffusion. Therefore, it was confirmed that intraparticle pore diffusion is the rate-controlling step. The negative Gibbs free energy change (ΔG = -3.262 ~ -7.581 kJ mol-1) and the positive enthalpy change (ΔH = 61.08 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, proving this process to be spontaneous and endothermic.

Effect of Health Education Method for Korean Patients with Essential Hypertension on Their Compliance with Health Behaviors (보건교육방법이 본태성 고혈압 환자의 건강행위 이행에 미치는 효과)

  • 손경욱;유왕근
    • Korean Journal of Health Education and Promotion
    • /
    • v.21 no.2
    • /
    • pp.215-231
    • /
    • 2004
  • The purpose of this study was to examine what factors affected patients who suffered from essential hypertension compliance with health behaviors, to help build a successful strategy to step up their compliance with health behaviors, and to seek effective ways to implement health education programs for patients with chronic disease. The subjects in this study were 60 people selected from among the patients who were diagnosed by physicians as having essential hypertension in S General Hospital in the city of P from April 10 through July 30, 2000, after health education was provided four times a month. The quasi- experimental design based on a control group pretest-posttest design was employed. The subjects were divided into three groups of 20 patients each: one was an experimental group to receive education in one-to-one interview, another was an experimental group to receive education as a group, and the third was a control group. The two experimental groups learned the same material through different methods, and the control group was given the same teaching materials and asked to comply with health behaviors on their own without instruction. After the three-week education was implemented in different ways, their compliance with health behaviors was measured. Collected data was analyzed by t-test, paired test, one-way analysis of variance, correlation analysis and regression analysis procedures. The findings of this study were as follows: 1. Concerning the effective type of health education, the group education produced the best results, followed by the one-to-one interviews and the sole use of print media. 2. Regarding the effect of compliance with health behaviors, the group- educated group got the highest score in compliance with health behaviors, but blood pressure lowered more significantly in the individual interview group. And the compliance with health behaviors had a significant negative correlational relationship with both systolic and diastolic blood pressure. 3. Parameter that had most significant correlational relationship with compliance with health behaviors was health locus of control, followed by self-efficacy and health perception. But there was no significant correlational relationship between compliance with health behaviors and knowledge of hypertension. 4. As a result of analyzing the impact of knowledge of hypertension, health locus of control, self-efficacy and health perception on compliance with health behaviors, self-efficacy was found to exercise most influence. Above-mentioned findings suggested that group education or one- to-one discussion would be more effective for health care for hypertension in koreans, as they could serve to have patients realize their own responsibility for health and to motivate their compliance with health behaviors, and there was a need to more positively utilize educational intervention for patients with chronic diseases, which could elevate not only compliance with health behaviors but self-efficacy.

Estimating an Optimal Scale of a Railway Station with Non-Passengers (철도 비승차 이용객을 고려한 역사 시설물별 적정규모 산정방안)

  • Oh, Tae ho;Lee, Seon ha;Kang, Hee up;Insigne, Maria Sharlene L.;Lee, Sang Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.76-91
    • /
    • 2017
  • The Area of a domestic railway station is designed based on the 4-step traffic demand forecasting model with the average daily passenger count as one of its parameter. However, nowadays, due to increasing rate of railway station's function, the non-passengers are increasing. In order to consider those non-passengers who aren't using trains, assumed volume are added to the average daily passenger count of station to estimate the area, but the criteria being applied has no concrete basis. Therefore, this study aimed to recalculate the increasing non-passenger rate based on actual survey data of station users in any type of railway station to obtain the optimum area. Subsequently, the the design area was performed through pedestrian simulation. According to the result of the simulation, it was found that the total space of the exciting railway stations can be reduced up to 45% and will still satisfy the level of service(LOS) requirement.

Effects of Shore Stiffness and Concrete Cracking on Slab Construction Load I: Theory (슬래브의 시공하중에 대한 동바리 강성 및 슬래브 균열의 영향 I: 이론)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Im, Ju-Hyeuk;Kim, Jae-Yo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • Long-term floor deflection caused by excessive construction load became a critical issue for the design of concrete slabs, as a flat plate is becoming popular for tall buildings. To estimate the concrete cracking and deflection of an early age slab, the construction load should be accurately evaluated. The magnitude of construction load acting on a slab is affected by various design parameters. Most of existing methods for estimating construction load addressed only the effects of the construction period per story, material properties of early age concrete, and the number of shored floors. In the present study, in addition to these parameter, the effects of shore stiffness and concrete cracking on construction load were numerically studied. Based on the result, a simplified method for estimating construction load was developed. In the proposed method, the calculation of construction load is divided to two steps: 1)Onset of concrete placement at a top slab. 2)Removal of shoring. At each step, the construction load increment is distributed to the floor slabs according to the ratio of slab stiffness to shore stiffness. The proposed method was compared with existing methods. In a companion paper, the proposed method will be verified by the comparison with the measurements of actual construction loads.