• Title/Summary/Keyword: Stemness

Search Result 64, Processing Time 0.031 seconds

Novel Function of Sprouty4 as a Regulator of Stemness and Differentiation of Embryonic Stem Cells

  • Lee, Jae-Young;Park, Sunghyun;Kim, Kwang-Soo;Ko, Jeong-Jae;Lee, Soohong;Kim, Keun Pil;Park, Kyung-Soon
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.149-155
    • /
    • 2016
  • Sprouty (Spry) genes encode inhibitors of the receptor tyrosine kinase signaling cascade, which plays important roles in stem cells. However, the role of Spry4 in the stemness of embryonic stem cells has not been fully elucidated. Here, we used mouse embryonic stem cells (mESCs) as a model system to investigate the role of Spry4 in the stem cells. Suppression of Spry4 expression results in the decreases of cell proliferation, EB formation and stemness marker expression, suggesting that Spry4 activity is associated with stemness of mESCs. Teratoma assay showed that the cartilage maturation was facilitated in Spry4 knocked down mESCs. Our results suggest that Spry4 is an important regulator of the stemness and differentiation of mESCs.

Andrographolide Promotes the Stemness of Epidermal Cells through the Extracellular Signal-regulated Kinase (ERK) Pathway (Andrographolide의 Extracellular Signal-regulated Kinase Pathway (ERK)를 통한 상피 세포 줄기세포능 향상)

  • You, Jiyoung;Roh, Kyung-Baeg;Shin, Seoungwoo;Park, Deokhoon;Jung, Eunsun
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.1
    • /
    • pp.18-24
    • /
    • 2019
  • Andrographolide, the main compound of Andrographis paniculata (A. paniculata), shows various biological properties including anti-viral, anti-inflammatory, anti-diabetic, and hepatoprotective effects. Our previous study has shown that A. paniculata extract exerts antiaging effects by activation of stemness in epidermal stem cells (EpSCs). In this study, we investigated the effect of andrographolide as a main compound of A. paniculata on EpSCs and its mechnism of action using several in vitro assays. Andrographolide increased the proliferation of EpSCs and induced cell cycle progression. Additionally, andrographolide increased VEGF production and the expression of stem cell markers integrin ${\beta}1$ and p63. Furthermore, phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), S6 ribosomal protein (S6RP) and Akt were increased by andrographolide. Taken together, these results indicate that andrographolide-induced proliferation of EpSCs is mediated by the ERK1/2, Akt-dependent pathway with increased production of VEGF and upregulated stemness through integrin ${\beta}1$ and p63.

Differential characterization of myogenic satellite cells with linolenic and retinoic acid in the presence of thiazolidinediones from prepubertal Korean black goats

  • Subi, S.;Lee, S.J.;Shiwani, S.;Singh, N.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.439-448
    • /
    • 2018
  • Objective: Myogenic satellite cells were isolated from semitendinosus muscle of prepubertal Korean black goat to observe the differential effect of linolenic and retinoic acid in thepresence of thiazolidinediones (TZD) and also to observe the production insulin sensitive preadipocyte. Methods: Cells were characterized for their stemness with cluster of differentiation 34 (CD34), CD13, CD106, CD44, Vimentin surface markers using flow cytometry. Cells characterized themselves as possessing significant (p<0.05) levels of CD13, CD34, CD106, Vimentin revealing their stemness potential. Goat myogenic satellite cells also exhibited CD44, indicating that they possessed a % of stemness factors of adipose lineage apart from their inherent stemness of paxillin factors 3/7. Results: Cells during proliferation stayed absolutely and firmly within the myogenic fate without any external cues and continued to show a significant (p<0.05) fusion index % to express myogenic differentiation, myosin heavy chain, and smooth muscle actin in 2% horse serum. However, confluent myogenic satellite cells were the ones easily turning into adipogenic lineage. Intriguingly, upregulation in adipose specific genetic markers such as peroxisome proliferation-activated receptor ${\gamma}$, adiponectin, lipoprotein lipase, and CCAAT/enhancer binding protein ${\alpha}$ were observed and confirmed in all given treatments. However, the amount of adipogenesis was found to be statistically significant (p<0.01) with linolenic acid as compared to retinoic acid in combination with TZD's. Conclusion: Retinoic acid was found to produce smaller preadipocytes which have been assumed to have insulin sensitization and hence retinoic acid could be used as a potential agent to sensitize tissues to insulin in combination with TZD's to treat diabetic conditions in humans and animals in future.

Hydrogen Peroxide Promotes Epithelial to Mesenchymal Transition and Stemness in Human Malignant Mesothelioma Cells

  • Kim, Myung-Chul;Cui, Feng-Ji;Kim, Yongbaek
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3625-3630
    • /
    • 2013
  • Reactive oxygen species (ROS) are known to promote mesothelial carcinogenesis that is closely associated with asbestos fibers and inflammation. Epithelial to mesenchymal cell transition (EMT) is an important process involved in the progression of tumors, providing cancer cells with aggressiveness. The present study was performed to determine if EMT is induced by $H_2O_2$ in human malignant mesothelioma (HMM) cells. Cultured HMM cells were treated with $H_2O_2$, followed by measuring expression levels of EMT-related genes and proteins. Immunohistochemically, TWIST1 expression was confined to sarcomatous cells in HMM tissues, but not in epithelioid cells. Treatment of HMM cells with $H_2O_2$ promoted EMT, as indicated by increased expression levels of vimentin, SLUG and TWIST1, and decreased E-cadherin expression. Expression of stemness genes such as OCT4, SOX2 and NANOG was also significantly increased by treatment of HMM cells with $H_2O_2$. Alteration of these genes was mediated via activation of hypoxia inducible factor 1 alpha (HIF-$1{\alpha}$) and transforming growth factor beta 1 (TGF-${\beta}1$). Considering that treatment with $H_2O_2$ results in excess ROS, the present study suggests that oxidative stress may play a critical role in HMM carcinogenesis by promoting EMT processes and enhancing the expression of stemness genes.

Identification of stemness and differentially expressed genes in human cementum-derived cells

  • Lee, EunHye;Kim, Young-Sung;Lee, Yong-Moo;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Su-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.329-341
    • /
    • 2021
  • Purpose: Periodontal treatment aims at complete regeneration of the periodontium, and developing strategies for periodontal regeneration requires a deep understanding of the tissues composing the periodontium. In the present study, the stemness characteristics and gene expression profiles of cementum-derived cells (CDCs) were investigated and compared with previously established human stem cells. Candidate marker proteins for CDCs were also explored. Methods: Periodontal ligament stem cells (PDLSCs), pulp stem cells (PULPSCs), and CDCs were isolated and cultured from extracted human mandibular third molars. Human bone marrow stem cells (BMSCs) were used as a positive control. To identify the stemness of CDCs, cell differentiation (osteogenic, adipogenic, and chondrogenic) and surface antigens were evaluated through flow cytometry. The expression of cementum protein 1 (CEMP1) and cementum attachment protein (CAP) was investigated to explore marker proteins for CDCs through reverse-transcription polymerase chain reaction. To compare the gene expression profiles of the 4 cell types, mRNA and miRNA microarray analysis of 10 samples of BMSCs (n=1), PDLSCs (n=3), PULPSCs (n=3), and CDCs (n=3) were performed. Results: The expression of mesenchymal stem cell markers with a concomitant absence of hematopoietic markers was observed in PDLSCs, PULPSCs, CDCs and BMSCs. All 4 cell populations also showed differentiation into osteogenic, adipogenic, and chondrogenic lineages. CEMP1 was strongly expressed in CDCs, while it was weakly detected in the other 3 cell populations. Meanwhile, CAP was not found in any of the 4 cell populations. The mRNA and miRNA microarray analysis showed that 14 mRNA genes and 4 miRNA genes were differentially expressed in CDCs vs. PDLSCs and PULPSCs. Conclusions: Within the limitations of the study, CDCs seem to have stemness and preferentially express CEMP1. Moreover, there were several up- or down-regulated genes in CDCs vs. PDLSCs, PULPSCs, and BMSCs and these genes could be candidate marker proteins of CDCs.

YY1 and CP2c in Unidirectional Spermatogenesis and Stemness

  • Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho;Kim, Chul Geun
    • Development and Reproduction
    • /
    • v.24 no.4
    • /
    • pp.249-261
    • /
    • 2020
  • Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.

Stem Cell Properties of Gastric Cancer Stem-Like Cells under Stress Conditions Are Regulated via the c-Fos/UCH-L3/β-Catenin Axis

  • Jae Hyeong Lee;Sang-Ah Park;Il-Geun Park;Bo Kyung Yoon;Jung-Shin Lee;Ji Min Lee
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.476-485
    • /
    • 2023
  • Gastric cancer stem-like cells (GCSCs) possess stem cell properties, such as self-renewal and tumorigenicity, which are known to induce high chemoresistance and metastasis. These characteristics of GCSCs are further enhanced by autophagy, worsening the prognosis of patients. Currently, the mechanisms involved in the induction of stemness in GCSCs during autophagy remain unclear. In this study, we compared the cellular responses of GCSCs with those of gastric cancer intestinal cells (GCICs) whose stemness is not induced by autophagy. In response to glucose starvation, the levels of β-catenin and stemness-related genes were upregulated in GCSCs, while the levels of β-catenin declined in GCICs. The pattern of deubiquitinase ubiquitin C-terminal hydrolase-L3 (UCH-L3) expression in GCSCs and GCICs was similar to that of β-catenin expression depending on glucose deprivation. We also observed that inhibition of UCH-L3 activity reduced β-catenin protein levels. The interaction between UCH-L3 and β-catenin proteins was confirmed, and it reduced the ubiquitination of β-catenin. Our results suggest that UCH-L3 induces the stabilization of β-catenin, which is required to promote stemness during autophagy activation. Also, UCH-L3 expression was regulated by c-Fos, and the levels of c-Fos increased in response to autophagy activation. In summary, our findings suggest that the inhibition of UCH-L3 during nutrient deprivation could suppress stress resistance of GCSCs and increase the survival rates of gastric cancer patients.

STK899704 inhibits stemness of cancer stem cells and migration via the FAK-MEK-ERK pathway in HT29 cells

  • Jang, Hui-Ju;Bak, Yesol;Pham, Thu-Huyen;Kwon, Sae-Bom;Kim, Bo-Yeon;Hong, JinTae;Yoon, Do-Young
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.596-601
    • /
    • 2018
  • Colon cancer is one of the most lethal and common malignancies worldwide. STK899704, a novel synthetic agent, has been reported to exhibit anticancer effects towards numerous cancer cells. However, the effect of STK899704 on the biological properties of colon cancer, including cancer cell migration and cancer stem cells (CSCs), remains unknown. Here, we examined the inhibitory effect of STK899704 on cell migration and CSC stemness. In the wound healing assay, STK899704 significantly inhibited the motility of colon cancer cells. Furthermore, STK899704 downregulated the mRNA expression levels of the cell migration mediator focal adhesion kinase (FAK). STK899704 also suppressed mitogen-activated protein kinase kinase and extracellular signal-regulated kinase, which are downstream signaling molecules of FAK. Additionally, STK899704 inhibited stemness gene expression and sphere formation in colon cancer stem cells. These results suggest that STK899704 can be used to treat human colon cancer.

Stemness and Proliferation of Murine Skin-Derived Precursor Cells under Hypoxic Environment

  • Kim, Hyewon;Park, Sangkyu;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.41 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • Skin-derived precursors (SKPs) have potential to differentiate to various cell types including osteoblasts, adipocytes and neurons. SKPs are a candidate for cell-based therapy since they are easily accessible and have multipotency. Most mammalian cells are exposed to a low oxygen environment with 1 to 5% $O_2$ concentration in vivo, while 21% $O_2$ concentration is common in in vitro culture. The difference between in vitro and in vivo $O_2$ concentration may affect to the behavior of cultured cells. In this report, we investigated the effect of hypoxic condition on stemness and proliferation of SKPs. The results indicated that SKPs exposed to hypoxic condition for 5 days showed no change in proliferation. In terms of mRNA expression, hypoxia maintained expression of stemness markers; whereas, oncogenes, such as Klf4 and c-Myc, were downregulated, and the expression of Nestin, related to cancer migration, was also downregulated. Thus, SKPs cultured in hypoxia may reduce the risk of cancer in SKP cell-based therapy.

Comparative characteristic study from bone marrow-derived mesenchymal stem cells

  • Purwaningrum, Medania;Jamilah, Nabila Syarifah;Purbantoro, Steven Dwi;Sawangmake, Chenphop;Nantavisai, Sirirat
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.74.1-74.13
    • /
    • 2021
  • Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.