• Title/Summary/Keyword: Stem rot disease

Search Result 130, Processing Time 0.021 seconds

The First Report of Postharvest Stem Rot of Kohlrabi Caused by Sclerotinia sclerotiorum in Korea

  • Kim, Joon-Young;Aktaruzzaman, Md.;Afroz, Tania;Hahm, Young-Il;Kim, Byung-Sup
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.409-411
    • /
    • 2014
  • In March 2014, a kohlrabi stem rot sample was collected from the cold storage room of Daegwallyong Horticultural Cooperative, Korea. White and fuzzy mycelial growth was observed on the stem, symptomatic of stem rot disease. The pathogen was isolated from the infected stem and cultured on potato dextrose agar for further fungal morphological observation and to confirm its pathogenicity, according to Koch's postulates. Morphological data, pathogenicity test results, and rDNA sequences of internal transcribed spacer regions (ITS 1 and 4) showed that the postharvest stem rot of kohlrabi was caused by Sclerotinia sclerotiorum. This is the first report of postharvest stem rot of kohlrabi in Korea.

Suppression of Bipolaris Stem Rot on Cactus by Heat-inactivated Conidial Suspension of Bipolaris cactivora

  • Choi, Min-Ok;Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.231-237
    • /
    • 2010
  • The heat-inactivated (at $121^{\circ}C$ for 20 min) conidial suspension of Bipolaris cactivora (HICS) was evaluated for the control of Bipolaris stem rot of cactus caused by B. cactivora. Severe rot symptoms were developed on the cactus stem discs inoculated with B. cactivora from 5 days after inoculation. However, only small brownish spots developed on the stem discs treated with HICS 2 days prior to the pathogen inoculation. HICS also reduced symptom development on cactus stem discs inoculated with other fungal pathogens such as Alternaria alternata, Colletotrichum gloeosporioides, and Fusarium oxysporum, suggesting its disease-inhibitory efficacy may not be pathogen-specific. HICS significantly reduced severities of the stem rot disease on several cactus species including Hylocereus trigonus, Cereus peruvianus, Chamaecereus silvestrii and Gymnocalycium mianovichii, but not on Cereus tetragonus. Extensive wound periderms were formed in the stem tissues of inoculation and/or wounding sites on C. peruvianus treated with HICS alone or prior to the pathogen inoculation, but not on C. tetragonus, indicating the structural modifications may be related to the mechanism of disease suppression by HICS. HICS also reduced the disease development on the grafted cactus (H. trigonus stock and G. mianovichii scion) with the control efficacy nearly equivalent to the application of a commercial fungicide. All of these results suggest HICS can be used as an environmental-friendly agent for the control of the cactus stem disease.

Didymella acutilobae sp. nov. Causing Leaf Spot and Stem Rot in Angelica acutiloba

  • Gyo-Bin Lee;Ki Deok Kim;Weon-Dae Cho;Wan-Gyu Kim
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.313-319
    • /
    • 2023
  • During disease surveys of Angelica acutiloba plants in Korea, leaf spot symptoms were observed in a field in Andong in July 2019, and stem rot symptoms in vinyl greenhouses in Yangpyeong in April 2020. Incidence of leaf spot and stem rot of the plants ranged from 10 to 20% and 5 to 30%, respectively. Morphological and cultural characteristics of fungal isolates from the leaf spot and stem rot symptoms fitted into those of the genus Phoma. Molecular phylogenetic analyses of two single-spore isolates from the symptoms using concatenated sequences of LSU, ITS, TUB2, and RPB2 genes authenticated an independent cluster from other Didymella (anamorph: Phoma) species. Moreover, the isolates showed different morphological and cultural characteristics in comparison to closely related Didymella species. These discoveries confirmed the novelty of the isolates. Pathogenicity of the novel Didymella species isolates was substantiated on leaves and stems of A. acutiloba through artificial inoculation. Thus, this study reveals that Didymella acutilobae sp. nov. causes leaf spot and stem rot in Angelica acutiloba.

Stem Rot of Garlic (Allium sativum) Caused by Sclerotium rolfsii

  • Kwon, Jin-Hyeuk
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.156-158
    • /
    • 2010
  • Stem rot disease was found in garlic (Allium sativum L.) cultivated from 2008 to 2010 in the vegetable gardens of some farmers in Geumsan-myon, Jinju City, Gyeongnam province in Korea. The initial symptoms of the disease were typical water-soaked spots, which progressed to rotting, wilting, blighting, and eventually death. White mycelial mats had spread over the lesions near the soil line, and sclerotia had formed over the mycelial mats on the stem. The sclerotia were globoid in shape, 1~3 mm in size, and tan to brown in color. The optimum temperature for growth and sclerotia formation on potato dextrose agar (PDA) medium was $30^{\circ}C$. The diameter of the hyphae ranged from approximately 4 to $8\;{\mu}m$. Typical clamp connection structures were observed in the hyphae of the fungus, which was grown on PDA medium for 4 days. On the basis of the mycological characteristics and pathogenicity of the fungus on the host plants, the causal agent was identified as Sclerotium rolfsii Saccardo. This is the first report of stem rot disease in garlic caused by S. rolfsii in Korea.

Occurrence of Bacterial Stem Rot of Ranunculus asiaticus Caused by Pseudomonas marginalis in Korea

  • Li, Weilan;Ten, Leonid N.;Kim, Seung-Han;Lee, Seung-Yeol;Jung, Hee-Young
    • Research in Plant Disease
    • /
    • v.24 no.2
    • /
    • pp.138-144
    • /
    • 2018
  • In December 2016, stem rot symptoms were observed on Persian buttercup (Ranunculus asiaticus) plants in Chilgok, Gyeongbuk, Korea. In the early stage of the disease, several black spots appeared on the stem of infected plants. As the disease progressed, the infected stem cleaved and wilted. The causal agent was isolated from a lesion and incubated on Reasoner's 2A (R2A) agar at $25^{\circ}C$. Total genomic DNA was extracted for phylogenetic analysis. Based on the 16S rRNA gene analysis, the isolated strain was found to belong to the genus Pseudomonas. To identify the isolated bacterial strain at the species level, the nucleotide sequences of the gyrase B (gyrB) and RNA polymerase D (rpoD) genes were obtained and compared with the sequences in the GenBank database. As the result, the causal agent of the stem rot disease was identified as Pseudomonas marginalis. To determine the pathogenicity of the isolated bacterial strain, it was inoculated into the stem of healthy R. asiaticus plant, the inoculated plant showed a lesion with the same characteristics as the naturally infected plant. Based on these results, this is the first report of bacterial stem rot on R. asiaticus caused by P. marginalis in Korea.

Identification and Pathogenicity of Rhizoctonia solani Isolates Causing Leaf and Stem Rot in Three-Leaf Ladybell

  • Wan-Gyu Kim;Hyo-Won Choi;Gyo-Bin Lee;Weon-Dae Cho
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.377-383
    • /
    • 2023
  • In 2020 and 2021, we surveyed diseases of three-leaf ladybell (Adenophora triphylla) plants grown in fields at two locations in Korea. During the disease surveys, severe leaf rot symptoms were observed on the young plants in Hongseong, and stem rot symptoms on the adult plants in Cheolwon. The incidence of leaf rot was 5-60%, and that of stem rot 1-10%. We obtained 6 fungal isolates each from the leaf rot lesions and the stem rot lesions. All the isolates were morphologically identified as Rhizoctonia solani. Anastomosis test and investigation of cultural features of the fungal isolates revealed that the isolates from the leaf rot lesions corresponded to R. solani AG-1(IB), and those from the stem rot lesions to R. solani AG-2-2(IIIB). Two isolates each of R. solani AG-1(IB) and AG-2-2(IIIB) were used for DNA sequence analysis and pathogenicity test to three-leaf ladybell plants through artificial inoculation. The anastomosis groups and cultural types of the R. solani isolates were confirmed by the sequence analysis. The pathogenicity tests revealed that the isolates of R. solani AG-1(IB) caused only leaf rot symptoms on the inoculated plants, and those of R. solani AG-2-2(IIIB) leaf rot and stem rot symptoms. The induced symptoms were similar to those observed in the fields investigated. Leaf and stem rot of three-leaf ladybell caused by the two anastomosis groups and cultural types of R. solani is first reported in this study.

Bacterial Black Stem Rot on Angelica acutiloba Caused by Xanthomonas campestris

  • Han, Kwang-Seop;Shim, Myoung-Youg;Oh, In-Seok;Han, Kyu-Hung;Park, Jae-Eul
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.54-55
    • /
    • 2002
  • Soaked black rot symptom was observed on the stem of Angelica acutiloba from July to August 2000 at Kumsan, Chungnam in Korea. This disease usually occurred under humid and high temperature conditions. The lesions on the stem appeared as soft rot with brown elliptical spots, which developed into large black spots at a later stage. When the bacterial isolates from the diseased plants were inoculated onto healthy plants by artificial needle prick method, symptoms similar to that observed in the fields developed. According to the cultural characteristics and pathogenicity of the isolates on the host plant the causal bacterium was identified as Xanthomonas campestris. This study proposed that the disease be named "bacterial black stem rot of A. acutiloba"loba".

Stem Rot of Gondre Caused by Rhizoctonia solani AG-2-2(IV)

  • Wan-Gyu Kim;Gyo-Bin Lee;Hong-Sik Shim;Weon-Dae Cho
    • The Korean Journal of Mycology
    • /
    • v.51 no.2
    • /
    • pp.141-146
    • /
    • 2023
  • Stem rot symptoms were observed in Gondre (Cirsium setidens) plants growing in a vinyl greenhouse in Taebaek, Korea during a disease survey in June 2022. The plants presented with dark brown to black rot on the stems at or above the soil line. Severely diseased plants displayed wilt and blight. Disease incidence among these plants ranged from 1 to 5%. Three isolates of Rhizoctonia sp. were obtained from the stem lesions of diseased plants. All isolates were identified as Rhizoctonia solani AG-2-2(IV) based on the morphological and cultural characteristics, results of the anastomosis test, and phylogenetic analysis. The pathogenicity of the isolates to Gondre plants was confirmed using an artificial inoculation test. The lesions induced by the inoculation test were similar to those observed in the investigated vinyl greenhouse. Here, we report a case of R. solani AG-2-2(IV) causing stem rot in Gondre.

Association Analysis of Charcoal Rot Disease Resistance in Soybean

  • Ghorbanipour, Ali;Rabiei, Babak;Rahmanpour, Siamak;Khodaparast, Seyed Akbar
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.189-199
    • /
    • 2019
  • In this research, the relationships among the 31 microsatellite markers with charcoal rot disease resistance related indices in 130 different soybean cultivars and lines were evaluated using association analysis based on the general linear model (GLM) and the mixed linear model (MLM) by the Structure and Tassel software. The results of microsatellite markers showed that the genetic structure of the studied population has three subpopulations (K=3) which the results of bar plat also confirmed it. In association analysis based on GLM and MLM models, 31 and 35 loci showed significant relationships with the evaluated traits, respectively, and confirmed considerable variation of the studied traits. The identified markers related to some of the studied traits were the same which can probably be due to pleiotropic effects or tight linkage among the genomic regions controlling these traits. Some of these relationships were including, the relationship between Sat_252 marker with amount of charcoal rot disease, Satt359, Satt190 and Sat_169 markers with number of microsclerota in stem, amount of charcoal rot disease and severity of charcoal rot disease, Sat_416 marker with number of microsclerota in stem and amount of charcoal rot disease and the Satt460 marker with number of microsclerota in stem and severity of charcoal rot disease. The results of this research and the linked microsatellite markers with the charcoal rot disease-related characteristics can be used to identify the suitable parents and to improve the soybean population in future breeding programs.

Occurrence of Stem Rot Caused by Bipolaris cactivora on Different Species of Cactus and Its Pathogenicity (Bipolaris cactivora에 의한 선인장 줄기썩음병의 발생과 병원성)

  • 현익화;이상덕;황병철;고경일;정후섭;김병기
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.56-59
    • /
    • 2001
  • Stem rot of cacti was found at major cultivating areas including Koyang, Ansung and Eumsung of Korea in 2000. Bipolaris cactivora was consistently isolated from the lesions. The disease occurred on different species of cactus including Cereus peruvianus, C. neopithahaja f. monstruo년, C. tetragonus, Chamaeceresu silestrii, Ch. silvestrii, f. variegata, Gymnocalcium mihanovichii var. friedrichii. G. denudatum var. pentacantha, Hylocereus trigonus and Isolatocereus dumortier. Major symptoms on the cactus species except H. trigohus were almost identical. A rapid rot of the upper portion of the catus stem appeared, and became blackened and somewhat dry. On H. trigonus, the symptom was initially light yellow, water-soaked lesion, turned into light brown and dried to death. According to pathogenicity test, 10 out of 16 cactus species and varieties tested produced identical symptoms as found in the field. However, the fungi did not show pathogenicity to Notocactus scopa, Echinocactus grusonii, Eriocactus leninghausii, Lobivia nealeana, Mammillaria elongata var. intertexta.

  • PDF