• Title/Summary/Keyword: Stem cell therapy

Search Result 418, Processing Time 0.029 seconds

Biodegradable Screws Containing Bone Morphogenetic Protein-2 in an Osteoporotic Rat Model

  • Jin, Eun-Sun;Kim, Ji Yeon;Lee, Bora;Min, JoongKee;Jeon, Sang Ryong;Choi, Kyoung Hyo;Jeong, Je Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.5
    • /
    • pp.559-567
    • /
    • 2018
  • Objective : The aim of this study was to evaluate the effect for biodegradable screws containing bone morphogenetic protein-2 (BMP-2) in an osteoporotic rat model. Methods : Twenty-four female Wistar rat (250-300 g, 12 weeks of age) were randomized into four groups. Three groups underwent bilateral ovariectomy (OVX). Biodegradable screws with or without BMP-2 were inserted in the proximal tibia in two implantation groups. The extracted proximal metaphysis of the tibiae were scanned by exo-vivo micro-computed tomography. Evaluated parameters included bone mineral density (BMD), trabecular bone volume (BV/TV), trabecular number, trabecular thickness, and trabecular separation (Tb.Sp). The tibia samples were pathologically evaluated by staining with by Hematoxylin and Eosin, and trichrome. Results : Trabecular formation near screw insertion site was evident only in rats receiving BMP-2 screws. BMD and BV/TV significantly differed between controls and the OVX and OVX with screw groups. However, there were no significant differences between control and OVX with screw BMP groups. Tb.Sp significantly differed between control and OVX and OVX with screw groups (p<0.05), and between the OVX and OVX with screw BMP group (p<0.05), with no statistically significant difference between control and OVX with screw BMP groups. Over the 12 weeks after surgery, bone lamellae in direct contact with the screw developed more extensive and thicker trabecular bone around the implant in the OVX with screw BMP group compared to the OVX with screw group. Conclusion : Biodegradable screws containing BMP-2 improve nearby bone conditions and enhance ostoeintegration between the implant and the osteoporotic bone.

Preliminary Study on Effect of Lactiplantibacillus plantarum on Osteoporosis in the Ovariectomized Rat

  • Eun-Sun Jin;Ji Yeon Kim;JoongKee Min;Sang Ryong Jeon;Kyoung Hyo Choi;Shehzad Abid Khan;Gi-Seong Moon;Je Hoon Jeong
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.712-720
    • /
    • 2023
  • Osteoporosis is a growing global health concern primarily associated with decreased estrogen in postmenopausal women. Recently, some strains of probiotics were examined for potential anti-osteoporotic effects. This study intended to evaluate the impacts of Lactiplantibacillus plantarum MGE 3038 strain (MGE 3038) in ovariectomized rats. For this purpose, twelve weeks old female Wistar rats (n=21; 250-300 g) were divided into 3 groups; ovariectomy (OVX) group, OVX/MGE 3038 group and Sham group (control). In these groups; two went through respective OVX and one had daily MGE 3038 administration through oral gavage. Prior to 16 weeks after OVX, we collected blood samples and extracted the tibiae. We scanned the extracted tibiae by in-vivo micro-computed tomography (micro-CT) and evaluated pathology by hematoxylin and eosin (H&E) and Masson's trichrome staining. The serum levels of C-telopeptide of type I collagen (CTX), osteocalcin (OC), and the receptor activator of nuclear factor-κB ligand (RANKL) were examined. The OVX/MGE 3038 group showed increases in bone mineral density, trabecular bone volume, trabecular number, and trabecular thickness (Tb.Th), and a decrease in trabecular spacing than the OVX group. However, OVX/MGE 3038 group and control group were measurably comparable in Tb.Th. Micro-CT, H&E, and Masson's trichrome findings exhibited increased preservation and maintenance of trabecular bone structure in the OVX/MGE 3038 group in comparison to the OVX group. In serum, the levels of CTX, OC and RANKL were significantly different between the OVX and OVX/MGE 3038 groups. Taken together, L. plantarum MGE 3038 could be helpful for the treatment of osteoporosis.

Cancer Stem Cells and Response to Therapy

  • Tabarestani, Sanaz;Ghafouri-Fard, Soudeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.5947-5954
    • /
    • 2012
  • The cancer stem cell (CSC) model states that cancers are organized in cellular hierarchies, which explains the functional heterogeneity often seen in tumors. Like normal tissue stem cells, CSCs are capable of self-renewal, either by symmetric or asymmetric cell division, and have the exclusive ability to reproduce malignant tumors indefinitely. Current systemic cancer therapies frequently fail to eliminate advanced tumors, which may be due to their inability to effectively target CSC populations. It has been shown that embryonic pathways such as Wnt, Hedgehog, and Notch control self-renewal and cell fate decisions of stem cells and progenitor cells. These are evolutionary conserved pathways, involved in CSC maintenance. Targeting these pathways may be effective in eradicating CSCs and preventing chemotherapy or radiotherapy resistance.

Genetically Modified Human Embryonic Stem Cells Relieve Symptomatic Motor Behavior in a Rat Model of Parkinson′s Disease

  • 길광수;이영재;김은영;이창현;이훈택;정길생;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.74-74
    • /
    • 2003
  • Embryonic stem cells have several characteristics suitable for cell replacement therapy. To investigate a possibility of using human embryonic stem cell (hESC) as a carrier of therapeutic gene(s), hESC (MB03) was co-transfected with cDNAS coding for tyrosine hydroxylase (TH) and GTP cyclohydrolase Ⅰ (GTPCH Ⅰ) and bulk-selected using neomycin and hygromycin-B. Successful transfection was confirmed by western immunoblotting and RT-PCR. The genetically modified hESC (bk-THGC) relieved apomorphine-induced asymmetric motor behavior by approximately 54% when grafted into striatum of 6-OHDA-denervated rat brain. The number of rotation, however, increased up to 176+18% in 6 weeks when sham-grafted compared with number of rotation before graft. Immunohistochemical staining revealed that the grafted hESC survived and expressed TH for at least 6 weeks while the experiment was continued.

  • PDF

Adult Mesenchymal Stem Cells for Cell Therapy in Clinical Application (임상적용을 위한 세포치료제로서의 성체 중간엽줄기세포)

  • Song, In-Hwan
    • Journal of Yeungnam Medical Science
    • /
    • v.26 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Human bone marrow-derived mesenchymal stem cells (MSCs) are a rare population of undifferentiated cells that have the capacity of self renewal and the ability to differentiate into mesodermal phenotypes, including osteocytes, chondrocytes, and adipocytes in vitro. Recently, MSCs have been shown to reside within the connective tissue of most organs, and their surface phenotype has been well analyzed. Many reports showed that transplanted MSCs enhanced regeneration as well as functional improvement of damaged organs and tissues. The wide differentiation plasticity of MSCs was expected to contribute to their demonstrated efficacy in a wide variety of experimental animal models and in human clinical trials. However, new findings suggest that the ability of MSCs to alter the tissue microenvironment via secretion of soluble factors may contribute more significantly than their capacity for differentiation in tissue repair. This review describes what is known about the cellular characteristics and differentiation potential of MSCs, which represent a promising stem cell population for further applications in regenerative medicine.

  • PDF

Liposome-Mediated Cancer Gene Therapy: Clinical Trials and their Lessons to Stem Cell Therapy

  • Lee, Jung-Hoon;Lee, Min-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.433-442
    • /
    • 2012
  • The promise of stem cell therapy for various clinical applications seems getting realistic. An increasing number of researchers, from virtually every discipline of natural sciences, are flocking into this new world. Only ten years ago, gene therapy was the medicine for the 21st century. The possibility was endless. Although the science itself underlying gene therapy was very young, the field was exploding under the optimism that this new medicine would revolutionize both the basic and clinical sciences. For many reasons, the initial target was cancer. Here, we will focus on the results of cancer gene therapy clinical trials using liposome or nonviral gene carrier, hoping that the lesson from here will be a guideline for the new generation of cell-based therapies.

Interferon-γ-mediated secretion of tryptophanyl-tRNA synthetases has a role in protection of human umbilical cord blood-derived mesenchymal stem cells against experimental colitis

  • Kang, Insung;Lee, Byung-Chul;Lee, Jin Young;Kim, Jae-Jun;Lee, Seung-Eun;Shin, Nari;Choi, Soon Won;Kang, Kyung-Sun
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.318-323
    • /
    • 2019
  • Mesenchymal stem cells (MSCs) are multipotent adult stem cells that present immunosuppressive effects in experimental and clinical trials targeting various rare diseases including inflammatory bowel disease (IBD). In addition, recent studies have reported tryptophanyl-tRNA synthetase (WRS) possesses uncanonical roles such as angiostatic and anti-inflammatory effects. However, little is known about the function of WRS in MSC-based therapy. In this study, we investigated if a novel factor, WRS, secreted from MSCs has a role in amelioration of IBD symptoms and determined a specific mechanism underlying MSC therapy. Experimental colitis was induced by administration of 3% DSS solution to 8-week-old mice and human umbilical cord blood-derived MSCs (hUCB-MSCs) were injected intraperitoneally. Secretion of WRS from hUCB-MSCs and direct effect of WRS on isolated $CD4^+$ T cells was determined via in vitro experiments and hUCB-MSCs showed significant therapeutic rescue against experimental colitis. Importantly, WRS level in serum of colitis induced mice decreased and recovered by administration of MSCs. Through in vitro examination, WRS expression of hUCB-MSCs increased when cells were treated with interferon-${\gamma}$ ($IFN-{\gamma}$). WRS was evaluated and revealed to have a role in inhibiting activated T cells by inducing apoptosis. In summary, $IFN-{\gamma}$-mediated secretion of WRS from MSCs has a role in suppressive effect on excessive inflammation and disease progression of IBD and brings new highlights in the immunomodulatory potency of hUCB-MSCs.

Immunomodulatory effect of mesenchymal stem cells and mesenchymal stem-cell-derived exosomes for COVID-19 treatment

  • Jayaramayya, Kaavya;Mahalaxmi, Iyer;Subramaniam, Mohana Devi;Raj, Neethu;Dayem, Ahmed Abdal;Lim, Kyung Min;Kim, Se Jong;An, Jong Yub;Lee, Yoonjoo;Choi, Yujin;Kirubhakaran, Arthi;Cho, Ssang-Goo;Vellingiri, Balachandar
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.400-412
    • /
    • 2020
  • The world has witnessed unimaginable damage from the coronavirus disease-19 (COVID-19) pandemic. Because the pandemic is growing rapidly, it is important to consider diverse treatment options to effectively treat people worldwide. Since the immune system is at the hub of the infection, it is essential to regulate the dynamic balance in order to prevent the overexaggerated immune responses that subsequently result in multiorgan damage. The use of stem cells as treatment options has gained tremendous momentum in the past decade. The revolutionary measures in science have brought to the world mesenchymal stem cells (MSCs) and MSC-derived exosomes (MSC-Exo) as therapeutic opportunities for various diseases. The MSCs and MSC-Exos have immunomodulatory functions; they can be used as therapy to strike a balance in the immune cells of patients with COVID-19. In this review, we discuss the basics of the cytokine storm in COVID-19, MSCs, and MSC-derived exosomes and the potential and stem-cell-based ongoing clinical trials for COVID-19.