• Title/Summary/Keyword: Stem cell characteristics

Search Result 215, Processing Time 0.036 seconds

Characterization and Genetic Profiling of the Primary Cells and Tissues from Mandible of Mouse Fetus and Neonate

  • Kang, Jung-Han;Nam, Hyun;Park, Soon-Jung;Oh, Keun-Hee;Lee, Dong-Seup;Cho, Jae-Jin;Lee, Gene
    • International Journal of Oral Biology
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2007
  • The stem cell research is emerging as a cutting edge topic for a new treatment for many chronic diseases. Recently, dental stem cell would be possible for regeneration of tooth itself as well as periodontal tissue. However, the study of the cell characterization is scarce. Therefore, we performed the genetic profiling and the characterization of mouse fetus/neonate derived dental tissue and cell to find the identification during dental development. We separated dental arch from mandibles of 14.5 d fetal mice and neonate 0 d under the stereoscope, and isolated dental cells primarily from the tissues. Then, we examined morphology and the gene expression profiles of the primary cells and dental tissues from fetus/neonate and adult with RT-PCR. Primary dental cells showed heterogeneous but the majority was shown as fibroblast-like morphology. The change of population doubling time levels (PDLs) showed that the primary dental cells have growth potential and could be expanded under our culture conditions without reduction of growth rate. Immunocytochemical and flow cytometric analyses were performed to characterize the primary dental cell populations from both of fetus (E14.5) and neonate. Alpha smooth muscle actin (${\alpha}-SMA$), vimentin, and von Willebrand factor showed strong expression, but desmin positive cells were not detected in the primary dental cells. Most of the markers were not uniformly expressed, but found in subsets of cells, indicating that the primary dental cell population is heterogeneous, and characteristics of the populations were changed during culture period. And mesenchymal stem cell markers were highly expressed. Gene expression profile showed Wnt family and its related signaling molecules, growth factors, transcription factors and tooth specific molecules were expressed both fetal and neonatal tissue. The tooth specific genes (enamelin, amelogenin, and DSPP) only expressed in neonate and adult stage. These expression patterns appeared same as primary fetal and neonatal cells. In this study we isolated primary cells from whole mandible of fetal and neonatal mice. And we investigated the characteristics of the primary cells and the profile of gene expressions, which are involved in epithelial-mesenchymal interactions during tooth development. Taken together, the primary dental cells in early passages or fetal and neonatal mandibles could be useful stem cell resources.

Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow

  • Kim, Su-Hwan;Kim, Young-Sung;Lee, Su-Yeon;Kim, Kyoung-Hwa;Lee, Yong-Moo;Kim, Won-Kyung;Lee, Young-Kyoo
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.4
    • /
    • pp.192-200
    • /
    • 2011
  • Purpose: The aim of this study is to compare the gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow for characterization of dental stem cells. Methods: We employed GeneChip analysis to the expression levels of approximately 32,321 kinds of transcripts in 5 samples of bone-marrow-derived mesenchymal stem cells (BMSCs) (n=1), periodontal ligament stem cells (PDLSCs) (n=2), and dental pulp stem cells (DPSCs) (n=2). Each cell was sorted by a FACS Vantage Sorter using immunocytochemical staining of the early mesenchymal stem cell surface marker STRO-1 before the microarray analysis. Results: We identified 379 up-regulated and 133 down-regulated transcripts in BMSCs, 68 up-regulated and 64 down-regulated transcripts in PDLSCs, and 218 up-regulated and 231 down-regulated transcripts in DPSCs. In addition, anatomical structure development and anatomical structure morphogenesis gene ontology (GO) terms were over-represented in all three different mesenchymal stem cells and GO terms related to blood vessels, and neurons were over-represented only in DPSCs. Conclusions: This study demonstrated the genome-wide gene expression patterns of STRO-$1^+$ mesenchymal stem cells derived from dental tissues and bone marrow. The differences among the expression profiles of BMSCs, PDLSCs, and DPSCs were shown, and 999 candidate genes were found to be definitely up- or down-regulated. In addition, GOstat analyses of regulated gene products provided over-represented GO classes. These data provide a first step for discovering molecules key to the characteristics of dental stem cells.

BAP1 controls mesenchymal stem cell migration by inhibiting the ERK signaling pathway

  • Seobin Kim;Eun-Woo Lee;Doo-Byoung Oh;Jinho Seo
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.250-255
    • /
    • 2024
  • Due to their stem-like characteristics and immunosuppressive properties, Mesenchymal stem cells (MSCs) offer remarkable potential in regenerative medicine. Much effort has been devoted to enhancing the efficacy of MSC therapy by enhancing MSC migration. In this study, we identified deubiquitinase BRCA1-associated protein 1 (BAP1) as an inhibitor of MSC migration. Using deubiquitinase siRNA library screening based on an in vitro wound healing assay, we found that silencing BAP1 significantly augmented MSC migration. Conversely, BAP1 overexpression reduced the migration and invasion capabilities of MSCs. BAP1 depletion in MSCs upregulates ERK phosphorylation, thereby increasing the expression of the migration factor, osteopontin. Further examination revealed that BAP1 interacts with phosphorylated ERK1/2, deubiquitinating their ubiquitins, and thus attenuating the ERK signaling pathway. Overall, our study highlights the critical role of BAP1 in regulating MSC migration through its deubiquitinase activity, and suggests a novel approach to improve the therapeutic potential of MSCs in regenerative medicine.

The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem cell-like properties through modulation of self-renewal signaling

  • Oh, Jisun;Yoon, Hyo-Jin;Jang, Jeong-Hoon;Kim, Do-Hee;Surh, Young-Joon
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.421-430
    • /
    • 2019
  • Background: The ginsenoside Rg3, one of active components of red ginseng, has chemopreventive and anticancer potential. Cancer stem cells retain self-renewal properties which account for cancer recurrence and resistance to anticancer therapy. In our present study, we investigated whether the standardized Korean Red Ginseng extract (RGE) and Rg3 could modulate the manifestation of breast cancer stem cell-like features through regulation of self-renewal activity. Methods: The effects of RGE and Rg3 on the proportion of $CD44^{high}/CD24^{low}$ cells, as representative characteristics of stem-like breast cancer cells, were determined by flow cytometry. The mammosphere formation assay was performed to assess self-renewal capacities of breast cancer cells. Aldehyde dehydrogenase activity of MCF-7 mammospheres was measured by the ALDEFLUOR assay. The expression levels of Sox-2, Bmi-1, and P-Akt and the nuclear localization of hypoxia inducible $factor-1{\alpha}$ in MCF-7 mammospheres were verified by immunoblot analysis. Results: Both RGE and Rg3 decreased the viability of breast cancer cells and significantly reduced the populations of $CD44^{high}/CD24^{low}$ in MDA-MB-231 cells. RGE and Rg3 treatment attenuated the expression of Sox-2 and Bmi-1 by inhibiting the nuclear localization of hypoxia inducible $factor-1{\alpha}$ in MCF-7 mammospheres. Suppression of the manifestation of breast cancer stem cell-like properties by Rg3 was mediated through the blockade of Akt-mediated self-renewal signaling. Conclusion: This study suggests that Rg3 has a therapeutic potential targeting breast cancer stem cells.

Growth, Clonability, and Radiation Resistance of Esophageal Carcinoma-derived Stem-like Cells

  • Li, Jian-Cheng;Liu, Di;Yang, Yan;Wang, Xiao-Ying;Pan, Ding-Long;Qiu, Zi-Dan;Su, Ying;Pan, Jian-Ji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4891-4896
    • /
    • 2013
  • Objective: To separate/enrich tumor stem-like cells from the human esophageal carcinoma cell line OE-19 by using serum-free suspension culture and to identify their biological characteristics and radiation resistance. Methods: OE-19 cells were cultivated using adherent and suspension culture methods. The tumor stem-like phenotype of CD44 expression was detected using flow cytometry. We examined growth characteristics, cloning capacity in soft agar, and radiation resistance of 2 groups of cells. Results: Suspended cells in serum-free medium formed spheres that were enriched for CD44 expression. CD44 was expressed in 62.5% of suspended cells, but only in 11.7% of adherent cells. The suspended cells had greater capacity for proliferation and colony formation in soft agar than the adherent cells. When the suspended and adherent cells were irradiated at 5 Gy, 10 Gy, or 15 Gy, the proportion of CD44+ suspended cells strongly and weakly positive for CD44 was 77.8%, 66.5%, 57.5%; and 21.7%, 31.6%, 41.4%, respectively. In contrast, the proportion of CD44+ adherent cells strongly positive for CD44 was 18.9%, 14.%, and 9.95%, respectively. When the irradiation dose was increased to 30 Gy, the survival of the suspended and adherent cells was significantly reduced, and viable CD44+ cells were not detected. Conclusion: Suspended cell spheres generated from OE-19 esophageal carcinoma cells in serum-free stem medium are enriched in tumor stem-like cells. CD44 may be a marker for these cells.

Histological and Cytological Changes Associated with Susceptible and Resistant Responses of Chili Pepper Root and Stem to Phytophthora capsici Infection

  • Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • Microscopic study of chili pepper (Capsicum annuum L.) infected with Phytophthora capsici, causing Phytophthora blight of chili pepper, was conducted to compare histological and cytological characteristics in the root and stem of susceptible (C. annuum cv. Bugang) and resistant (C. annuum cv. CM334) pepper cultivars. The susceptible pepper roots and stems were extensively penetrated and invaded by the pathogen initially into epidermal cells and later cortical and vascular cells. Host cell walls adjacent to and invaded by the infecting hyphae were partially dissolved and structurally loosened with fine fibrillar materials probably by cell wall-degrading enzymes of the pathogen. In the resistant pepper, the pathogen remained on root epidermal surface at one day after inoculation, embedded and captured in root exudation materials composed of proteins and polysaccharides. Also the pathogen appeared to be blocked in its progression at the early infection stages by thickened middle lamellae. At 3 days after inoculation, the oomycete hyphae were still confined to epidermal cells of the root and at most outer peripheral cortical cells of the stem, resulting from their invasion blocked by wound periderms formed underneath the infection sites and/or cell wall appositions bounding the hyphal protrusions. All of these aspects suggest that limitation of disease development in the resistant pepper may be due to the inhibition of the pathogen penetration, infection, invasion, and colonization by the defense structures such as root exudation materials, thickened middle lamellae, wound peridems and cell wall appositions.

Isolation and Characterization of Mammary FpithelialStem Cells in Culture (유선상피 간세포의 분리 및 특성연구)

  • ;;Kelly H. Clifton
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • The mammary gland contains a subpopulation of epithelial cells with large proliferative potentials which are the likely targets for carcinogens. These clonogenic cells can proliferate and differentiate into functional glandular structures. Rat mammary epithelial cells (RMEC) were isolated and characterized in vitro. By flow cytometry of RMEC stained with fluorescein isothiocyanate-peanut agglutinin(PNA) and phycoerythrin anti-Thy-1.1 monoclonal antibody, it was possible to four cell subpopulations from 7-8 week old F344 female rat mammary glands: cells negative to both reagents (B-), PNA-positive cells (PNA+), Thy-1.1-positive cells (Thy-1.1+), and cells positive to both reagents (B+). When single PNA+ cells were isolated and cultured in Matrigel with irradiated (∼50 Gray) 3T3 fibroblast feeder layer, they gave rise to multicellular clonal structures of three types: alveolar, foamy alveolar, and squamous colonies. The developed structures were similar to the mammary glands in vivo. These results suggest that some of PNA+ cells possesses many of the characteristics of multipotent clonogenic stem-like cells.

  • PDF

Characterization of the KG1a Cell Line for Use in a Cell Migration Based Screening Assay

  • Bernhard O. Palsson;Karl francis;Lee, Gyun-Min
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.178-184
    • /
    • 2002
  • High-throughput screening has become a popular method used to identify new “leads”for potentially therapeutic compounds. Further screening of these lead compounds is typically done with secondary assays which may utilize living, functioning cells as screening tools. A problem (or benefit) with these cell-based assays is that living cells are very sensitive to their environment. We have been interested in the process of stem cell migration and how it relates to the cellular therapy of bone marrow transplantation. In this study we describe a secondary, cell-based assay for screening the effects of various in-vitro conditions on Immature Hematopoietic Cell (IHC) migration. Our results have revealed many subtle factors, such as the cell's adhesive characteristics, or the effect of a culture's growth phase, that need to be accounted for in a screening protocol. Finally, we show that exponentially glowing KG1a cells (a human IHC cell line) were 10 times more motile than those in the lag or stationary phases. These data strongly suggest that KG1a cells secrete a chemokinetic factor during the exponential growth phase of a culture.

Parthenogenetic Mouse Embryonic Stem (mES) Cells Have Similar Characteristics to In Vitro Fertilization mES Cells

  • Lee Geum-Sil;Kim Eun-Yeong;Min Hyeon-Jeong;Park Se-Pil;Jeong Gil-Saeng;Im Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.83-83
    • /
    • 2002
  • This study was to compare the characteristics of parthenogenetic mES (P-mES) cells and in vitro fertilization mES cells. Mouse oocytes were recovered from superovulated 4wks hybrid F1 (C57BL/6xCBA/N) female mice. The oocytes were treated with 7% ethanol for 5 min and 5 ㎍/㎖ cytochalasin-B for 4 h. For IVF, the oocytes were inseminated with epididymal sperm of hybrid Fl male mice (1×10/sup 6//㎖). IVF and parthenogenetic embryos were cultured in M16 medium for 4 days. Cell number count in blastocysts was carried out differential labelling using propidium iodide (red) and bisbenzimide(blue). (omitted)

  • PDF

조류의 다능성 생식세포주 확립 및 분화 특성에 관한 연구

  • 박태섭;한재용
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2001.11a
    • /
    • pp.40-46
    • /
    • 2001
  • The use of pluripotent stem cells has tremendous advantages for various purposes but these cell lines with proven germ-line transmission have been completely established only in the mouse. Embryonic germ (EG) cell lines are also pluripotent and undifferentiated stem cells established from primordial germ cells (PGCs). This study was conducted to establish and characterize the chicken EG cells derived from gonadal primordial germ cells. We isolated gonadal PGCs from 5.5-day-old (stage 28) White leghorn (WL) embryos and established chicken EG cells lines with EG culture medium supplemented with human stem cell factor (hSCF), murine leukemia inhibitory factor (mLIF), bovine basic fibroblast growth factor (bFGF), human interleukin-11 (hIL-11), and human insulin-like growth factor-I (hIGF-I). These cells grew continuously for 4 months (10 passages) on a feeder layer of mitotically active chicken embryonic fibroblasts. These cells were characterized by screening with the Periodic acid-Shiff's reaction, anti-SSEA-1 antibody, and a proliferation assay after several passages. As the results, the chicken EG cells maintained characteristics of undifferentiated stem cells as well as that of gonadal PGCs. When cultured in suspension, the chicken EG cells successfully formed an embryoid body and differentiated into a variety of cell types when re-seeded onto culture dish. The chicken EG cells were injected into blastodermal layer at stage X and dorsal aorta of recipient embryo at stage 14 (incubation of 53hrs) and produced chimeric chickens with various differentiated tissues derived from the EG cells. The germline chimeras were also successfully induced by using EG cells. Thus, Chicken EG cells will be useful for the production of transgenic chickena and for studies of germ cell differentiation and genomic imprinting.

  • PDF