• Title/Summary/Keyword: Stem Wave 연파

Search Result 8, Processing Time 0.019 seconds

Hydraulic Experiments of Stem Waves due to Multi-Directional Random Waves along a Vertical Caisson (다방향 불규칙파에 의한 직립벽 주위의 연파특성)

  • Yoo, Hyung-Seok;Kim, Kyu-Han;Jung, Eui-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.429-436
    • /
    • 2010
  • Hydraulic experiments were conducted to analyze the characteristics of stem waves due to multidirectional random wave incidence with the different incident angles of main wave direction. Both multi-directional and uni-directional random waves were used to generate the stem waves and their results were compared with each other. The experiment shows multi-directional random waves developed along the vertical wall tend to increase as the incident angle increases similar to the uni-directional waves. Moreover, the stem wave widths were almost same as those in uni-directional random wave cases. However, the experiment demonstrate the stem wave heights were significantly smaller in multi-directional random wave cases than in uni-directional random wave cases.

A Study on the Characteristics of the Stem Wave in front of the Coastal Structure (해안구조물 전면의 Stem Wave특성에 관한 연구)

  • PARK HYO-BONG;YOON HAN-SAM;RYU CHEONG-RO
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.25-31
    • /
    • 2003
  • Numerical experiments have been conducted using the nonlinear combined refraction-diffraction model, in order to analyze the generation characteristics of stem wave, which is formed by the interaction between vertical structure and the oblique incident waves. The results of stem wave are discussed through the stem wave height distribution along/normal vertical structure, under the wide range of incident wave conditions-wave heights, periods, depths, and angles. Under the same wave height and period, the larger the incident wave angle, the higher the stem wave heights. According to the results of wave height distribution, in front of vertical structure, the maximum of stern wave heights occurs in the location bordering the vertical wall. Furthermore, the most significant result is that stem waves occur under the incident angles between $0^{\circ}\;and\;30^{\circ}$, and the stem wave height ratio has the maximum value, which is approximately 1.85 times the incident wave height when the incident wave angle becomes $23^{\circ}$.

Laboratory Experiments of Stem Waves along a Vertical Structure under Overtopping Conditions (월파조건에서 직립구조물을 따른 연파실험)

  • Lee, Jong-In;Kim, Young-Taek
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1275-1292
    • /
    • 2012
  • This study investigates the characteristics of stem waves along a vertical structure under overtopping conditions through laboratory experiments in a wave basin. The uni-directional random waves with Bretschneider-Mitsuyasu frequency spectrum as incident waves were used. This study is focused on the reduction of wave height due to the variation of relative freeboard height (R) and the results for wave overtopping conditions are compared with those for non-overtopping conditions. Though the relative wave height along a vertical structure decreases with the decrease of relative freeboard, the variation of stem width is not significant. For the relative freeboard is greater than 1, the reduction effect of stem wave height by overtopping can be ignored in this experiments. The reduction effect of wave height along the structure for R =0.5 is about 10% comparing with R =1.5.

Hydraulic Experiments of Stem Waves along a Vertical Wall due to Unidirectional Random Waves (직립벽을 따른 일방향 불규칙파의 연파실험)

  • Lee, Jong-In;Choi, Jun-Woo;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.49-61
    • /
    • 2008
  • This study investigates the characteristics of stem waves along a vertical wall generated by obliquely incident random waves through laboratory experiments conducted in a wave basin and numerical simulations using REF/DIF S model developed by Kirby and $\ddot{O}zkan$(1994). The investigation is focused on the effect of random waves on the propagation characteristics of stem waves and the difference or similarity between monochromatic and random waves. The results of REF/DIF S model are compared with laboratory measurements and good agreements are obtained. The relative significant wave height along a wall is almost same with monochromatic condition, but the wave pattern along normal to the wall shows a significant difference.

Effects of Stem Wave on the Vertical Breakwater (해안구조물 전면의 Stem Wave 특성에 관한 연구)

  • 박효봉;윤한삼;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.138-143
    • /
    • 2001
  • Based on mild slope equation and parabolic approximation the forward diffraction of monochromatic waves by a straight breakwater are studied numerically. The characteristics and effects of stem wave along breakwater and the relations between the stem wave and incident wave angle are discussed.

  • PDF

Hydraulic and Numerical Experiments of Stem Waves along a Vertical Wall (직립벽을 따른 연파의 수리 및 수치실험)

  • Lee, Jong In;Yoon, Sung Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.405-412
    • /
    • 2006
  • This study investigates the characteristics of stem waves along a vertical wall generated by obliquely incident monochromatic waves through laboratory experiments conducted in a wave basin and numerical simulations using parabolic approximation equations. The investigation is focused on the nonlinear effect of incident waves on the propagation characteristics of stem waves. Numerical results are compared with laboratory measurements and good agreements are obtained. The main results of this study show that the normalized stem wave height along the wall decreases and the stem width increases as the angle of incident waves decreases or the nonlinearity of the incident waves increases.

Stem Wave Analysis of Regular Waves using a Boussinesq Equation (Boussinesq 방정식을 이용한 규칙파의 연파해석)

  • Lee, Jong-In;Kim, Young-Taek;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.446-456
    • /
    • 2007
  • Numerical analyses of stem waves, the interaction between incident and reflected waves of obliquely incident regular waves along a vertical wall in a constant water depth, are presented. For the numerical model of the analysis, the two-layer Boussinesq equations developed by Lynett and Liu(2004a,b) are employed. Numerical results are compared with both laboratory measurements and those obtained using parabolic approximation model. The overall comparisons between the results from the two numerical models and the experiments are good. However, the two-layer Boussinesq model is more accurate than the parabolic approximation model as the angle of incident waves increases. In particular, the higher harmonic generation due to the wave nonlinearity is captured only in the Boussinesq model.

On the Feasibility of Freak Waves Formation within the Harbor Due to the Presence of Infra-Gravity Waves of Bound Mode Underlying the Ever-Present Swells (Bound Mode의 외중력파에 의한 항내 이상파 생성가능성에 대하여)

  • Cho, Yong Jun;Bae, Jung Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • We carry out the numerical simulation to test a hypothesis that freak waves can be triggered by the infragravity waves of bound mode underlying the ever-present swells and its constructive interaction with swells using the Tool Box called the ihFoam that has its roots on the OpenFoam, and Bi-spectrum. Numerical simulation is implemented for the SamChcuk LNG Plant where freak waves have been reported in front of the private wharf during its construction phase due to the uncompleted northern breakwater. Infra-gravity waves of bound mode is generated using the difference wave-wave interaction between the local wind waves of 7 s and a swell of 11.4 s based on the Bi-spectrum. For the sake of comparison, numerical simulation for infra-gravity waves of free mode is also carried out. Numerical results show that stem waves along the private wharf for SamChcuk LNG Plant can be triggered by the infra-gravity waves of bound mode coming from the north, which eventually leads to freak waves when encounters the reflected waves from the south jetty.