• Title/Summary/Keyword: Stem Cell

Search Result 2,433, Processing Time 0.037 seconds

Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress

  • Kim, Pyung-Hwan;Na, Sang-Su;Lee, Bomnaerin;Kim, Joo-Hyun;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.702-707
    • /
    • 2015
  • To overcome the disadvantages of stem cell-based cell therapy like low cell survival at the disease site, we used stanniocalcin 2 (STC2), a family of secreted glycoprotein hormones that function to inhibit apoptosis and oxidative damage and to induce proliferation. STC2 gene was transfected into two kinds of stem cells to prolong cell survival and protect the cells from the damage by oxidative stress. The stem cells expressing STC2 exhibited increased cell viability and improved cell survival as well as elevated expression of the pluripotency and self-renewal markers (Oct4 and Nanog) under sub-lethal oxidative conditions. Up-regulation of CDK2 and CDK4 and down-regulation of cell cycle inhibitors p16 and p21 were observed after the delivery of STC2. Furthermore, STC2 transduction activated pAKT and pERK 1/2 signal pathways. Taken together, the STC2 can be used to enhance cell survival and maintain long-term stemness in therapeutic use of stem cells.

Current Status and Future Strategies to Treat Spinal Cord Injury with Adult Stem Cells

  • Jeong, Seong Kyun;Choi, Il;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Spinal cord injury (SCI) is one of the most devastating conditions and many SCI patients suffer neurological sequelae. Stem cell therapies are expected to be beneficial for many patients with central nervous system injuries, including SCI. Adult stem cells (ASCs) are not associated with the risks which embryonic stem cells have such as malignant transformation, or ethical problems, and can be obtained relatively easily. Consequently, many researchers are currently studying the effects of ASCs in clinical trials. The environment of transplanted cells applied in the injured spinal cord differs between the phases of SCI; therefore, many researchers have investigated these phases to determine the optimal time window for stem cell therapy in animals. In addition, the results of clinical trials should be evaluated according to the phase in which stem cells are transplanted. In general, the subacute phase is considered to be optimal for stem cell transplantation. Among various candidates of transplantable ASCs, mesenchymal stem cells (MSCs) are most widely studied due to their clinical safety. MSCs are also less immunogenic than neural stem/progenitor cells and consequently immunosuppressants are rarely required. Attempts have been made to enhance the effects of stem cells using scaffolds, trophic factors, cytokines, and other drugs in animal and/or human clinical studies. Over the past decade, several clinical trials have suggested that transplantation of MSCs into the injured spinal cord elicits therapeutic effects on SCI and is safe; however, the clinical effects are limited at present. Therefore, new therapeutic agents, such as genetically enhanced stem cells which effectively secrete neurotrophic factors or cytokines, must be developed based on the safety of pure MSCs.

Interferon-γ-mediated secretion of tryptophanyl-tRNA synthetases has a role in protection of human umbilical cord blood-derived mesenchymal stem cells against experimental colitis

  • Kang, Insung;Lee, Byung-Chul;Lee, Jin Young;Kim, Jae-Jun;Lee, Seung-Eun;Shin, Nari;Choi, Soon Won;Kang, Kyung-Sun
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.318-323
    • /
    • 2019
  • Mesenchymal stem cells (MSCs) are multipotent adult stem cells that present immunosuppressive effects in experimental and clinical trials targeting various rare diseases including inflammatory bowel disease (IBD). In addition, recent studies have reported tryptophanyl-tRNA synthetase (WRS) possesses uncanonical roles such as angiostatic and anti-inflammatory effects. However, little is known about the function of WRS in MSC-based therapy. In this study, we investigated if a novel factor, WRS, secreted from MSCs has a role in amelioration of IBD symptoms and determined a specific mechanism underlying MSC therapy. Experimental colitis was induced by administration of 3% DSS solution to 8-week-old mice and human umbilical cord blood-derived MSCs (hUCB-MSCs) were injected intraperitoneally. Secretion of WRS from hUCB-MSCs and direct effect of WRS on isolated $CD4^+$ T cells was determined via in vitro experiments and hUCB-MSCs showed significant therapeutic rescue against experimental colitis. Importantly, WRS level in serum of colitis induced mice decreased and recovered by administration of MSCs. Through in vitro examination, WRS expression of hUCB-MSCs increased when cells were treated with interferon-${\gamma}$ ($IFN-{\gamma}$). WRS was evaluated and revealed to have a role in inhibiting activated T cells by inducing apoptosis. In summary, $IFN-{\gamma}$-mediated secretion of WRS from MSCs has a role in suppressive effect on excessive inflammation and disease progression of IBD and brings new highlights in the immunomodulatory potency of hUCB-MSCs.

The Cancer Stem Cell Theory: Is It Correct?

  • Yoo, Min-Hyuk;Hatfield, Dolph L.
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.514-516
    • /
    • 2008
  • The cancer stem cell hypothesis posits that tumor growth is driven by a rare subpopulation of cells, designated cancer stem cells (CSC). Studies supporting this theory are based in large part on xenotransplantation experiments wherein human cancer cells are grown in immunocompromised mice and only CSC, often constituting less than 1% of the malignancy, generate tumors. Herein, we show that all colonies derived from randomly chosen single cells in mouse lung and breast cancer cell lines form tumors following allografting histocompatible mice. Our study suggests that the majority of malignant cells rather than CSC can sustain tumors and that the cancer stem cell theory must be reevaluated.

Interdomain Signaling in Stem Cell Maintenance of Plant Shoot Meristems

  • Bleckmann, Andrea;Simon, Rudiger
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.615-620
    • /
    • 2009
  • The plant shoot meristem maintains a group of stem cells that remain active throughout the plant life. They continuously generate new cells that are then recruited for organ initiation in the peripheral zone. Stem cell proliferation and daughter cell differentiation has to be integrated with overall growth and development of the diverse functional domains within the shoot apex. Several studies have revealed extensive communication between these domains. The signaling mechanisms employed comprise diffusible peptides, directional transport of plant hormones, but also complex interactions between transcription factors, that together establish a panoply of regulatory inputs that fine-tune stem cell behavior in the shoot meristem.

Simplified Slow Freezing Program Established for Effective Banking of Embryonic Stem Cells

  • Kim, Gil Ah;Lee, Seung Tae;Lee, Eun Ju;Choi, Jung Kyu;Lim, Jeong Mook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.343-349
    • /
    • 2009
  • This study was designed to simplify a cryopreservation program for embryonic stem cells (ESCs) by selection of cooling method and cryoprotectant. Commercially available mouse E14 embryonic stem cells (ESCs) were cryopreserved with various protocols, and morphology and viability of the frozen-thawed ESCs and their reactive oxygen species (ROS) production were subsequently monitored. Post-thaw colony-formation of ESCs was detected only after a slow freezing using dimethyl sulfoxide (DMSO) by stepwise placement of a freezing container into a $-80^{\circ}C$ deep freezer and subsequently into -$196^{\circ}C$ liquid nitrogen, while no proliferation was detected after vitrification. When the simplified protocol was employed, the replacement of DMSO with a mixture of DMSO and ethylene glycol (EG) further improved the post-thaw survival. ROS generation in ESCs frozen-thawed with the optimized protocol was not increased compared with non-frozen ESCs. The use of fresh mouse embryonic fibroblasts as feeder cells for post-thaw subculture did not further increase post-thaw cell viability. In conclusion, a simplified slow-freezing program without employing programmable freezer but using DMSO and EG was developed which maintains cell viability and colony-forming activity of ESCs during post-thaw subculture.

Protective Effect of NACA on Periodontal Stem Cell (NACA 처리에 따른 치주줄기세포 사멸 억제 효과)

  • Lee, Kyunghee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.3
    • /
    • pp.53-62
    • /
    • 2020
  • Purpose :Periodontal ligament stem cells maintain tissue homeostasis in periodontal ligament. The purpose of this study was to determine the characteristics of periodontal ligament stem cells isolated from premolar teeth and observe protective effects against oxidative damage caused by Triethylene glycol dimethacrylate (TEGDMA) following treatment with N-acetylsysteine amide (NACA) drug known as enzymatic antioxidants. Methods : Primary periodontal ligament stem cell (PDSC) culture was performed from simply extracted human premolar of orthodontic patients. The characteristics of the primary cultured PDSCs was analyzed using the FACS system. PDSCs was incubated with TEGDMA and NACA. The cell proliferation and survival was determined using WST-1 assay. Collected data were analyzed using SPSS Window 20. Results : Primary cultured PDSCs grow on the floor and develop rapidly in a cluster form from up to 14 days. The morphology of PDSCs showed the spindle-shaped cells and grew directionally. FACS analysis, In addition, positive expression of visible cells were observed in mesenchymal stem cell biomarkers. PDLSCs cell viability was significantly decreased at high concentration in both 3 and 6 hours after TEGDMA treatment. We observed a decrease in the number of cells as well as a morphological change of PDLSCs. Antioxidative effect was notable since the death of PDLSC death was significantly inhibited compared to the control group at 24 and 48 hours after NACA treatment. Conclusion : Therefore, based on the results of this study, further research should be encouraged considering the development of clinical treatment methods using various antioxidants as well as regenerative engineering techniques utilizing periodontal ligament stem cells.

Effect of Transplantation of Intravascular Cultured Neural Stem Cell upon Peripheral Nerve Regeneration (혈관내에 배양한 신경줄기세포의 이식이 말초신경 재생에 미치는 영향)

  • 양영철;김우일;박중규;배기원
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.306-316
    • /
    • 2002
  • The ultrastructural change of sciatic nerve and immunohistochemical changes of NGF, PCNA were studied at the transplanted segment of intravascular cultured neural stem cell in the rat sciatic nerve by 5 months after the sciatic nerve transection. The transplanted intravascular neural stem cells were differentiated into Schwann reals at the 20th day and these cells began to regenerate by the proliferation and hypertrophy. There were many remyelinating Schwann cells in the transplanted nerve in term of stimulation. According to NGF finding, we suggest preexisting Schwann cells may induce the differentiation of neural stem cells into regenerating Schwann cells. Electron microscopic changes were the remyelinating appearance, the increase of intraaxonal microtubules and enlarged mitochondria and contacting tell processes each other.

Stem Cell for the Present: Reconfiguration of Stem Cell Research, Ethics and Bio-industry in South Korea after the Hwang (현재를 위한 줄기세포: 황우석 사태 이후 한국에서 줄기세포 연구와 윤리, 바이오산업의 재구성)

  • Paik, Young-Gyung
    • Journal of Science and Technology Studies
    • /
    • v.12 no.1
    • /
    • pp.185-207
    • /
    • 2012
  • Since the Hwang scandal, the South Korean state has expressed often-conflicting interests of encouraging stem cell research and the IVF industry to save the country and introducing the ethical regulation in conformity with "Global Standard." As the tightening ethical regulation of stem cell research has enervated the field of human Embryonic stem cell(hESC) research, somatic stem cells (re-)emerged as an alternative savior that could rescue the future of research communities, bio-industry, practicing doctors, patients and the nation itself from the crisis. The recent literature on Korean biotechnology, however, mainly focus on hESC and relatively little attention has been given to the rapidly growing field of research on somatic stem cells like hematopoietic stem cells(HSCs) or Adipose derived stem cells(ASCs). While the hESC therapy is often regarded as experimental and ethically controversial, the HSCs or Mesenchymal stem cell(MSC) therapies have already made their ways into people's everyday life through market without much public discussion. Many ordinary people in South Korea are familiar with the story of patients who survived leukemia with the HSCs treatment; the number of doctors who are actively marketing the ASCs therapies is on the rapid increase; the concept of cosmetic products made from ASCs is gaining popularity among consumers. In this context, this article argues that the current ethical debates solely focusing on hESC or on the state policy and research regulation are too limiting to fully illuminate the politics of stem cell technologies in South Korea.

  • PDF