• Title/Summary/Keyword: Steering column system

Search Result 33, Processing Time 0.014 seconds

An Ontology-Based Hazard Analysis and Risk Assessment for automotive functional safety (자동차 기능안전성을 위한 온톨로지 기반의 위험원 분석 및 위험 평가)

  • Roh, Kyung-Hyun;Lee, Keum-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.9-17
    • /
    • 2015
  • The ISO 26262 standard requires a preliminary hazard analysis and risk assesment early in the development for automotive system. This is a first step for the development of an automotive system to determine the necessary safety measures to be implemented for a certain function. In this paper, we propose an ontology-based hazard analysis and risk assessment method for automotive functional safety. We use ontology to model the hazard and SWRL(Semantic Web Language) to describe risk analysis. The applicability of the proposed method is evaluated by the case study of an ESCL(electronic steering column lock) system. The result show that ontology deduction is useful for improving consistency and accuracy of hazard analysis and risk assessment.

Study on Concurrent Simulation Technique of Matlab CMDPS and A CarSim Base Full Car Model (매트랩 CMDPS와 카심 기반 완전차량모델의 동시시뮬레이션 기술에 관한 연구)

  • Jang, Bongchoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1555-1560
    • /
    • 2013
  • The Column type Motor Driven Power Steering(CMDPS) systems are generally equipped among passenger vehicles ensuring better vehicle safety and fuel economy. In general to analyze systems and to develop a controller a full vehicle model from CarSim developed by Mechanical Simulation Incorporation interacting with MDPS control algorithm from Matlab Simulink was concurrently simulated. This paper describes the development of concurrent simulation technique in detail for analyzing Matlab Simulink MDPS control system with a dynamic vehicle system because the specific method has not been revealed in detail. The steering wheel angle input was evaluated and well compared with proving ground experimental data. The comparisons from concurrent simulation show an effective way to develop and validate the control algorithm. This concurrent simulation capability will be efficiently used for CMDPS performance evaluation and logic tuning as well as for vehicle handling performance.

Development of a finite Element Model for Studying the Occupant Behavior and Injury Coefficients of a Large-sized Truck (대형트럭 승객거동과 상해치 해석을 위한 유한요소모델의 개발)

  • O, Jae-Yun;Kim, Hak-Deok;Song, Ju-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1577-1584
    • /
    • 2002
  • This paper develops a finite element model for studying the occupant behavior and injury cofficients of a large-sized cab-over type truck. Since it does not have a room to absorb collision energy and deformation in front of the passenger compartment the deformation is directly transmitted to the passenger compartment. Moreover, since its steering column is attached on the frame, severe deformation of the frame directly affects on the steering wheel's movement. Therefore, if the occupant behavior and injury coefficients analysis is performed using a finite element model developed based on a sled test, it is very difficult to expect acquiring satisfactory results. Thus, the finite element model developing in this paper is based on the frontal crash test in order to overcome the inherent problems of the sled test based model commonly used in the passenger car. The occupant behavior and injury coefficients analysis is performed using PAM-CRASH installed in super-computer SP2. In order to validate the reliability of the developed finite element model, a frontal crash test is carried out according to a test method used fur developing truck occupant's secondary safety system in european community and japan. That is, test vehicle's collision direction is vertical to the rigid barrier and collision velocity is 45kph. Thus, measured vehicle pulses at the lower parts of the left and right B-pilla., dummy chest and head deceleration profiles, HIC(head injury criterial) and CA(chest acceleration) values, and dummy behavior from the frontal crash test are compared to the analysis results to validate reliability of the developed model.