• 제목/요약/키워드: Steering Motion

검색결과 194건 처리시간 0.022초

열차의 곡선주행능 해석에 관한 연구 (A Study on the Analysis of Curving Performance of Railway Vehicle)

  • 김도중;박삼진
    • 한국기계연구소 소보
    • /
    • 통권14호
    • /
    • pp.101-110
    • /
    • 1985
  • Kyung-p-1 main line is characterized by its curves radii of which are considerably small. It is essential for running time reduction of train to improve capabilities of curve negotiation. This improvement can be achieved by designing a bogie with flexible suspension system. The effect of the improvement is mainly concerned in the primary yaw stiffness of bogie suspension. This paper gives a linear analysis for the motion of railway vehicle on curved track and gives also computer simulation results for Semaul Train. The results introduce a conclusion that the primary yaw stiffness of Semaul train is too rigid to be self-steering on Kyung-pu main line curves.

  • PDF

직접요오모멘트를 이용한 이륜조향차량의 비결합 제어기 설계 (Decoupling Control of 2WS Cars Using Direct Yaw Moment)

  • 최재원;조충래
    • 제어로봇시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.761-767
    • /
    • 2005
  • There exists a structural limit of 2WS cars that drivers would not like simultaneously to follow the desired path and attenuate moments resulting from disturbances because lateral acceleration and yaw rate are coupled inherently. In order to overcome the limit, the 4WS cars that have rear wheel steering as an additional input have been introduced. But the 4WS cars have disadvantages that much cost is required due to structural alteration, it is difficult to be used to the driving circumstances and tire performances are not efficient in nonlinear or large lateral acceleration ranges. Therefore, it is proposed that, in this paper, a robust controller is easy to apply to 2WS cars by using direct yaw moment, decouples lateral acceleration from yaw motion and is robust against disturbances and uncertainties of system parameters, and thus the proposed control method has the advantages of 4WS cars which can be achieved in 2WS cars.

한국형 마네킨 구현에 의한 최적 시팅 패키지 설계 치수 제안 (Design Consideration of Optimal Seating Package by Generating Korean Manikins)

  • 이영신;박세진;남윤의;송근영
    • 대한인간공학회지
    • /
    • 제18권2호
    • /
    • pp.57-69
    • /
    • 1999
  • The primary objective of this research was to suggest the design dimensions of automotive seating package that has an important effect upon seating package design. To conduct the research, a set of manikin dimensions that are representative for Korean was determined by using a statistical scheme. With these dimensions, we generated nine manikins for male and female, respectively. Also, the preferred driving posture was investigated using the experimental setup. To find each joint angle for subjects, a driving monitoring system was developed and a three dimensional motion analysis system was employed. The joint angle for the subject was established and compared with related literature. With the generated manikins and each joint angle, the driving posture was simulated by using SAFEWORK that is a program to generate manikins. The positions and adjustable ranges from the accelerator heel point to the hip point and the steering wheel center point that are important variables in order to design seating package were suggested. Further research is needed to determine the seating package dimensions three dimensionally.

  • PDF

차량 운전조건과 속도변화를 고려한 요우모멘트제어 (The Direct Yaw-Moment Control regarding to control the vehicle handling condition)

  • 장영진;남광희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 추계학술대회 논문집
    • /
    • pp.69-70
    • /
    • 2013
  • By using differential force between left and right wheel, lateral motion can be controlled known as Direct Yaw-moment Control (DYC). In previous researches, DYC control is proposed to increase the stability of the vehicle, but maneuverability has not been discussed sufficiently. The car handling condition which is called the index parameter of maneuverability is dependent on the vehicle velocity and steering angle. To achieve the desired vehicle's cornering path, the car handling condition must be considered sufficiently. In this paper, the novel DYC method is proposed which gives the car handling condition regardless of the longitudinal speed. The proposed controller is based on the PI controller to feedback the curvature parameter. The controlled system shows the advantages of DYC regarding to the reference trajectory by the dual motor system. With respect to the uncontrolled model, the effectiveness of the proposed method is validated by numerical examples.

  • PDF

타이어와 차량 쏠림 I-시험결과 (Tire and Vehicle Pull I-Experimental Results)

  • 이정환;이주완
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.194-201
    • /
    • 2000
  • It is called vehicle pull when a vehicle drifts in the lateral direction under the straight-ahead motion with no steering or external input. Recently vehicle pull draws attention as one of the critical evaluation items from the customers on the vehicle quality. It is generally recognized that the vehicle pull is complex phenomena due to internal and external factors. In this paper the relations between vehicle pull and ire were investigated through close survey on the road test results from the final inspection of car manufactures. Through this investigation the factors are identified which play an important role in causing vehicle pull problem.

  • PDF

K1-궤도차량의 운동제어를 위한 퍼지-뉴럴제어 알고리즘 개발 (Development of Fuzzy-Neural Control Algorithm for the Motion Control of K1-Track Vehicle)

  • 한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.70-75
    • /
    • 1997
  • This paper proposes a new approach to the design of fuzzy-neuro control for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

DEVELOPMENT OF VEHICLE DYNAMICS MODEL FOR REAL-TIME ELECTRONIC CONTROL UNIT EVALUATION SYSTEM USING KINEMATIC AND COMPLIANCE TEST DATA

  • KIM S. S.;JUNG H. K.;SHIM J. S.;KIM C. W.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.599-604
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension, that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of test and simulation results demonstrates the validity of the proposed functional suspension modeling method. The model is computationally very efficient to achieve real-time simulation on TMS 320C6711 150 MHz DSP board of HILS (hardware-in-the-loop simulation) system for ECU (electronic control unit) evaluation of semi-active suspension.

AUTONOMOUS TRACTOR-LIKE ROBOT TRAVELING ALONG THE CONTOUR LINE ON THE SLOPE TERRAIN

  • Torisu, R.;Takeda, J.;Shen, H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.690-697
    • /
    • 2000
  • The objective of this study is to develop a method that is able to realize autonomous traveling for tractor-like robot on the slope terrain. A neural network (NN) and genetic algorithms (GAs) have been used for resolving nonlinear problems in this system. The NN is applied to create a vehicle simulator that is capable to describe the motion of the tractor robot on the slope, while it is impossible by the common dynamics way. Using this vehicle simulator, a control law optimized by GAs was established and installed in the computer to control the steering wheel of tractor robot. The autonomous traveling carried out on a 14-degree slope had initial successful results.

  • PDF

3차원 차량모델을 이용한 자동차 주행거동의 컴퓨터 시뮬레이션 (Computer Simulations of 4-Wheeled Vehicle Manoeuvres Using a 3-Dimensional Double-Track Vehicle Model)

  • 최영휴;이재형;이장무
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.97-108
    • /
    • 1995
  • A 3-dimensional double track vehicle model, that has 12-degress-of-freedom, was proposed to analyze handling and riding behaviours of an automotive car. Nonlinear characteristics of the suspension and steering systems of the vehicle model were considered in its equations of motion, which were solved by using the 4th-order Runge-Kutta integration method. Computer simulations for lane change, steady-state handling, and running-over-bump manoeuvres were made and verified by vehicle tests on proving ground. The computed results of the proposed model showed better agreement with test results than those of the conventional 2-dimensional single track model did. Especially they showed good accuracy near the characteristic speed and in high lateral accelerated manoeuvres.

  • PDF

MR 댐퍼를 이용한 철도 차량 조향 장치의 진동제어 (Vibration Control of Railway Vehicle Steering Mechanism Using Magnetorheological Damper)

  • 하성훈;최승복;유원희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.369-374
    • /
    • 2007
  • This paper presents yaw vibration control performances of railway vehicle featuring controllable magnetorheological damper. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid resistance and MR effect. Design parameters are determined to achieve desired damping force level. The MR damper model is then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. Subsequently, computer simulation of vibration control via proportional-integral-derivative (PID) controller is performed using Matlab. Various control performances are demonstrated under external excitation by creep force between wheel and rail.

  • PDF