• Title/Summary/Keyword: Steel-composite Concrete Structure

Search Result 359, Processing Time 0.024 seconds

IMPLEMENTATION OF PRODUCT DATA MANAGEMENT SYSTEM FOR DESIGN OF BRIDGE STRUCTURES

  • Jin-Suk Kang;Seung-Ho Jung;Yoon-Bum Lee;Kwang-Myong Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1318-1323
    • /
    • 2009
  • In recent years, dramatic advances in information technology have motivated the construction industry to improve its productivity. Computer-based information technology includes Computer-Aided Design (CAD), Computer-Aided Engineering (CAE), Computer-Aided Manufacturing (CAM), Enterprise Resource Planning (ERP), Digital Mock-Up (DMU) and Product Data Management (PDM). Most construction industries are trying to apply these technologies for quality improvement, reduction of construction time and cost. PDM is very useful for managing data and process related to product design and manufacturing. PDM system has various functions such as drawing and engineering document management, product structure and structure modification management, part classification management, workflow management, and project management. In this paper, PDM system was applied to the design of steel-concrete composite girder bridge. To make a practical guidance for PDM implementation to bridge design, the procedure for its implementation was presented. Consequently, this paper could be useful to enhance the efficiency of bridge design.

  • PDF

Application of self-centering wall panel with replaceable energy dissipation devices in steel frames

  • Chao, Sisi;Wu, Hanheng;Zhou, Tianhua;Guo, Tao;Wang, Chenglong
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.265-279
    • /
    • 2019
  • The self-centering capacity and energy dissipation performance have been recognized critically for increasing the seismic performance of structures. This paper presents an innovative steel moment frame with self-centering steel reinforced concrete (SRC) wall panel incorporating replaceable energy dissipation devices (SF-SCWD). The self-centering mechanism and energy dissipation mechanism of the structure were validated by cyclic tests. The earthquake resilience of wall panel has the ability to limit structural damage and residual drift, while the energy dissipation devices located at wall toes are used to dissipate energy and reduce the seismic response. The oriented post-tensioned strands provide additional overturning force resistance and help to reduce residual drift. The main parameters were studied by numerical analysis to understand the complex structural behavior of this new system, such as initial stress of post-tensioning strands, yield strength of damper plates and height-width ratio of the wall panel. The static push-over analysis was conducted to investigate the failure process of the SF-SCWD. Moreover, nonlinear time history analysis of the 6-story frame was carried out, which confirmed the availability of the proposed structures in permanent drift mitigation.

Accurate theoretical modeling and code prediction of the punching shear failure capacity of reinforced concrete slabs

  • Rajai Z. Al-Rousan;Bara'a R. Alnemrawi
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.419-434
    • /
    • 2024
  • A flat slab is a structural system where columns directly support it without the presence of beam elements. However, despite its wide advantages, this structural system undergoes a major deficiency where stresses are concentrated around the column perimeter, resulting in the progressive collapse of the entire structure as a result of losing the shear transfer mechanisms at the cracked interface. Predicting the punching shear capacity of RC flat slabs is a challenging problem where the factors contributing to the overall slab strength vary broadly in their significance and effect extent. This study proposed a new expression for predicting the slab's capacity in punching shear using a nonuniform concrete tensile stress distribution assumption to capture, as well as possible, the induced strain effect within a thick RC flat slab. Therefore, the overall punching shear capacity is composed of three parts: concrete, aggregate interlock, and dowel action contributions. The factor of the shear span-to-depth ratio (a_v/d) was introduced in the concrete contribution in addition to the aggregate interlock part using the maximum aggregate size. Other significant factors were considered, including the concrete type, concrete grade, size factor, and the flexural reinforcement dowel action. The efficiency of the proposed model was examined using 86 points of published experimental data from 19 studies and compared with five code standards (ACI318, EC2, MC2010, CSA A23.3, and JSCE). The obtained results revealed the efficiency and accuracy of the model prediction, where a covariance value of 4.95% was found, compared to (13.67, 14.05, 15.83, 19.67, and 20.45) % for the (ACI318, CSA A23.3, MC2010, EC2, and JSCE), respectively.

A Basic study of Bolt-type Connection Form of Green Frame (그린 프레임 볼트방식 접합형태 비교 기초연구)

  • Kim, Geun-Ho;Lim, Chae-yeon;Na, Young-Joo;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.337-338
    • /
    • 2012
  • As a rahmen structure, the connection among columns of Green frame is divided into three types such as sleeve, coupler (column pre and post installation), and bolt. The bolt type consists of six types according to steel frame shape and each type has different constructability, safety, structural performance, cost, and quality. Therefore, the analysis of comparison among the types is necessary. The objective of this study is to analyze the characteristics according to the shape of six bolt types to select the appropriate connection of Green frame. The results of this study can be used as a basic study for indentifying the characteristics of steel frame on site applying bolt type connection of Green frame. In addition, this study can be applicable to compare and analyze the performance and constructability of six bolt types in detail.

  • PDF

A graphical user interface for stand-alone and mixed-type modelling of reinforced concrete structures

  • Sadeghian, Vahid;Vecchio, Frank
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.287-309
    • /
    • 2015
  • FormWorks-Plus is a generalized public domain user-friendly preprocessor developed to facilitate the process of creating finite element models for structural analysis programs. The lack of a graphical user interface in most academic analysis programs forces users to input the structural model information into the standard text files, which is a time-consuming and error-prone process. FormWorks-Plus enables engineers to conveniently set up the finite element model in a graphical environment, eliminating the problems associated with conventional input text files and improving the user's perception of the application. In this paper, a brief overview of the FormWorks-Plus structure is presented, followed by a detailed explanation of the main features of the program. In addition, demonstration is made of the application of FormWorks-Plus in combination with VecTor programs, advanced nonlinear analysis tools for reinforced concrete structures. Finally, aspects relating to the modelling and analysis of three case studies are discussed: a reinforced concrete beam-column joint, a steel-concrete composite shear wall, and a SFRC shear panel. The unique mixed-type frame-membrane modelling procedure implemented in FormWorks-Plus can address the limitations associated with most frame type analyses.

A Study on the Dynamic Characteristics of Composite Deck Plate According to the Modification of Boundary Conditions (경계조건의 조절에 따른 합성 데크플레이트 슬래브의 거동특성에 관한 연구)

  • 김우영;정은호;엄철환;김희철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.371-376
    • /
    • 1998
  • As the requirement of high-rise buildings in big cities increases, steel structural system becomes more popular in spite of the relatively higher material cost compared to that of the concrete structural system. Most of the steel structure adopts metal deck floor system because of the easiness in construction. However, the metal deck floor system has a weakness on vibration which became very important factor in office buildings, hotels and residential buildings as the more sensitive machines being used. Therefore, most, of the building codes in many countries restrict the natural frequency of the each floor should be higher than or equal to 15 Hz. Floor vibration of the KEM deck composite floor system which has been , developed recently from the engineers and scientists in Korea was measured. Also, the simplified analytical derivation of natural frequency for each floor was studied according to the measured natural frequency for each different boundary condition of the floor. As the length of the slab gets bigger, the natural frequency of the slab becomes lower even though the structural designer still considers it as a one-way slab.

  • PDF

Implementation of the modified compression field theory in a tangent stiffness-based finite element formulation

  • Aquino, Wilkins;Erdem, Ibrahim
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.263-278
    • /
    • 2007
  • A finite element implementation of the modified compression field theory (MCFT) using a tangential formulation is presented in this work. Previous work reported on implementations of MCFT has concentrated mainly on secant formulations. This work describes details of the implementation of a modular algorithmic structure of a reinforced concrete constitutive model in nonlinear finite element schemes that use a Jacobian matrix in the solution of the nonlinear system of algebraic equations. The implementation was verified and validated using experimental and analytical data reported in the literature. The developed algorithm, which converges accurately and quickly, can be easily implemented in any finite element code.

Seismic Performance Assessment of a Modular System with Composite Section (합성단면을 적용한 모듈러 시스템의 내진 성능평가)

  • Choi, Young-Hoo;Lee, Ho-Chan;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.69-77
    • /
    • 2017
  • By producing pre-engineered modular system in the factory, It is enable to expedite construction and can be distinguished from two types by the method resisting load. One is the open-sided modular system composed of beams and columns. The other is enclosed modular system composed of panels and studs. Of the modular systems, the open-sided modular system buildings the connection between modules are difficult due to closed member sections, and the overall strength is reduced as a result of local buckling. In this study, in order to solve these problems, a modular system with folded steel members filled with concrete are proposed. The capacity spectrum method presented in ATC 40 is used for seismic performance assessment of the proposed model structure and the structure with conventional steel members. The analysis results show that at the performance point of each model the number and rotation of plastic hinge formed in the proposed modular system are smaller than those in the conventional system. Based on this observation it is concluded that the proposed system with composite sections has superior seismic capacity compared with conventional system.

Spatial mechanical behaviors of long-span V-shape rigid frame composite arch bridges

  • Gou, Hongye;Pu, Qianhui;Wang, Junming;Chen, Zeyu;Qin, Shiqiang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.59-73
    • /
    • 2013
  • The Xiaolan channel super large bridge is unique in style and with greatest span in the world with a total length of 7686.57 m. The main bridge with spans arranged as 100m+220m+100m is a combined structure composed of prestressed concrete V-shape rigid frame and concrete-filled steel tubular flexible arch. First of all, the author compiles APDL command flow program by using the unit birth-death technique and establishes simulation calculation model in the whole construction process. The creep characteristics of concrete are also taken into account. The force ratio of the suspender, arch and beam is discussed. The authors conduct studies on the three-plate webs's rule of shear stress distribution, the box girder's longitudinal bending normal stress on every construction stage, meanwhile the distribution law of longitudinal bending normal stress and transverse bending normal stress of completed bridge's box girder. Results show that, as a new combined bridge, it is featured by: Girder and arch resist forces together; Moment effects of the structure are mainly presented as compressed arch and tensioned girder; The bridge type brings the girder and arch on resisting forces into full play; Great in vertical stiffness and slender in appearance.

An Experimental Study on Structural Capacity of Joint Between Composite PHC Wall Pile and Bottom Slab with CT Shear Connector (CT형강 전단연결재가 적용된 합성형 PHC벽체파일-하부슬래브 연결부 성능에 관한 실험적 연구)

  • Mha, Ho Seong;Won, Jeong Hun;Lee, Jong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2013
  • This paper investigated the structural capacity of the CT shear connectors, which is a kind of the perfobond rib and functions as an anchor transferring the tension force in the joint between a composite PHC wall pile and a bottom slab. The direct pull-out test was performed for various specimens. From failure modes and load-displacement curves, it was found that transverse rebars should be placed to holes in a web to restrict pull-out failure of CT shear connectors. The results of additional tests for specimens with transverse rebars and various support lengths indicated that all specimens were failed by the tension failure of PHC pile before pull-out failure of CT shear connector and concrete pull-out failure. Thus, the CT shear connector could endure the tension force between the PHC wall pile and the bottom slab.