• Title/Summary/Keyword: Steel water pipe

Search Result 181, Processing Time 0.02 seconds

Application of corrosion inhibitors to water distribution systems

  • Park, Yong-Il;Woo, Dal-Sik;Cho, Young-Tai;Jo, Kwan-Hyung;Nam, Sang-Ho
    • Journal of Environmental Science International
    • /
    • v.11 no.5
    • /
    • pp.411-418
    • /
    • 2002
  • The current study evaluated the disinfection efficiency of free chlorine and chloramine for microorganisms on various pipe materials, such as copper, galvanized steel, carbon steel, and stainless steel. In addition, the effect of internal pipe corrosion and corrosion inhibitors on the bactericidal efficiency was evaluated using a simulated loop. For disinfection with a phosphate corrosion inhibitor, chloramination was found to be more effective than chlorination due to its persistence. Free chlorine disinfection was optimized with a high phosphoric acid concentration, while chloramine disinfection was optimized with a high phosphoric acid or low polyphosphate concentration. In simulated copper and galvanized steel loop tests, chloramination with phosphoric acid was demonstrated to be more effective.

A Study on the Stress Distribution of Steel Water Pipes(I) - Characteristics of Residual Stress Distribution by PWHT - (상수도용 도복장강관의 용접 및 외부하중에 의한 응력 특성에 관한 연구(I) - 후열처리에 의한 용접부의 잔류응력 특성 -)

  • 윤석환;이승기;나석주;고명환
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.285-291
    • /
    • 2001
  • Large steel water pipes are joined prevalently by the bell end method, and are welded both at inside and outside of lapped parts. In practice, welded joints of water pipes are very critical, because in most cases failure of pipes causing leakage occurs at the welded joint. Therefore some methods have been developed to ensure the soundness of welded joints of water pipes, like leakage tests and nondestructive tests (NDTs). But one of the major characteristics that affects the soundness of welded Joints is the stress distribution caused by welding and external forces. Some studies have been carried out on the residual stress of steel water popes, but complex stress distributions by welding and external forces are rarely studied. In this study, temperature and stress distributions in steel water pipes produced by welding are predicted by a three-dimensional finite element method(FEM). Also, stress values are measured from real steel water pipes by the hole-drilling methods, and compared with predicted ones. The influence of some typical post weld treatments on residual stress distribution was also investigated by residual stress measurements.

  • PDF

Safety analysis and deterioration evaluation of water pipe for improvement according to service year (상수도관의 개량을 위한 시간에 따른 노후도 및 안전성 분석)

  • Kwon, Hyuk Jae;Lee, Kyung Je
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.589-597
    • /
    • 2021
  • In this study, corrosion depth equation was suggested according to real measured corrosion data, and then management indexes of pipe network which can determine the deterioration rate and safety rate has been established and applied to real pipe networks. Furthermore, reliability analysis and management index analysis have been conducted to estimate and compare the deterioration rate. From the results of reliability analysis, it was found that probability of failure of 200 mm steel pipe can be increased from 4.36% at present time to 8.23% after 20years at Gaduk and from 7.35% to 12.99% at Nami. From the results of management index analysis, it was found that deterioration rates of Gaduk and Nami are 1.009 and 1.174, respectively. Priority of improvement and replacement of water pipe can be determined by results of reliability analysis and management index analysis.

Hybrid-Biocomposite Material for Corrosion Prevention in Pipeline: a review

  • Suriani, M.J.;Nik, W.B. Wan
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.85-89
    • /
    • 2017
  • One of the most challenging issues in the oil and gas industry is corrosion assessment and management in subsea structures or equipment. At present, almost all steel pipelines are sensitive to corrosion in harsh working environments, particularly in salty water and sulphur ingress media. Nowadays, the most commonly practiced solution for a damaged steel pipe is to entirely remove the pipe, to remove only a localized damaged section and then replace it with a new one, or to cover it with a steel patch through welding, respectively. Numerous literatures have shown that fiber-reinforced polymer-based composites can be effectively used for steel pipe repairs. Considerable research has also been carried out on the repair of corroded and gouged pipes incorporated with hybrid natural fiber-reinforced composite wraps. Currently, further research in the field should focus on enhanced use of the lesser and highly explored hybrid-biocomposite material for the development in corrosion prevention. A hybrid-biocomposite material from renewable resource based derivatives is cost-effective, abundantly available, biodegradable, and an environmentally benign alternative for corrosion prevention. The aim of this article is to provide a comprehensive review and to bridge the gap by developing a new hybrid-biocomposite with superhydrophobic surfaces.

Field Study on Wireless Remote Sensing for Stability Monitoring of Large Circular Steel Pipe for Marine Bridge Foundation (해상 교량기초용 대형 원형강관 가설공법의 무선 원격 안정성 모니터링을 위한 현장실험)

  • Park, Min-Chul;Lee, Jong-Sub;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.71-81
    • /
    • 2020
  • The large circular steel pipe for a marine bridge foundation has been developed as a construction method capable of performing the role of the working platform and cofferdam. The objective of this study is to demonstrate the wireless remote sensing system for monitoring the stability of the large circular steel pipe during construction and operation through field tests. The artificial seabed ground with an water level of 4 m is constructed for field tests. The large circular steel pipe with a diameter of 5 m and height of 9.5 m is installed into the ground by suction, and the embedded depth is 5 m. The inclinometer and strain gauges are installed on different surfaces of the upper module, and the tilt angle and stress are monitored throughout the entire construction process. As results, tilt angles are measured to be constant during the suction penetration. However, the tilt angle is larger in the x-axis direction. In addition, even when installed on different surfaces, the tilt angle in the same axial direction is measured to be almost the same. The stresses measured by strain gauges increase during suction penetration and decrease during pull-out. Based on measured stresses, it is found that the eccentricity is acting on the large circular steel pipe. This study shows that a wireless remote sensing system built with an inclinometer and strain gauge can be a useful tool for the stability monitoring of the large circular steel pipe.

The Effect of Heat Input on Grooving Corrosion Behavior in the Welds of Electric Resistance Welding Steel Pipe (ERW 강관 용접부의 홈부식거동에 미치는 입열량의 영향)

  • Lee, B.W.;Lee, J.S.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • The microstructure and electrochemical analysis of welds of electric resistance welding(ERW) pipe were investigated. The direction of metal flow line in HAZ of ERW pipe shifted to the inner(or outer) surface of pipe by plastic deformation during welding. The lowest heat input welds of ERW pipe was showed crack by liquid penetrant testing. Accelerated corrosion test by constant current density of 20mA/$cm^{2}$ developed groove at the welds of ERW pipe and the measured grooving factors were about $1.2{\sim}1.5$. Corrosion potential of base metal obtained by cyclic polarization in artificial sea water(3.5wt.% NaCl solution) was 100mV higher than that of weld metal of ERW pipe.

  • PDF

Characteristics of Corrosion and Water Quality in Simulated Reclaimed Water Distribution Pipelines (모형 재이용관을 이용한 하수재이용수의 부식 및 수질영향 연구)

  • Kang, Sung-Won;Lee, Jai-Young;Lee, Hyun-Dong;Kim, Gi-Eun;Kwak, Pill-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.473-479
    • /
    • 2012
  • Water reuse has been highlighted as a representative alternative to solve the lacking water resource. This study carried out a study on the pipe corrosion and water quality change which can occur through the supply of reclaimed water, using a simulated reclaimed water distribution pipeline. Galvanized steel pipe (GSP), cast iron pipe (CIP), stainless steel pipe (STSP) and PVC pipe (PVCP) were used for the pipe materials. Reclaimed water(RW) and tap water(TW) were respectively supplied into simulated reclaimed water distribution pipelines. As a result of performing a loop test to supply reclaimed water to simulated reclaimed water distribution pipelines, the weight reduction of pipe coupons showed the sequence of CIP > GSP > STSP ${\approx}$ PVCP. In addition, reclaimed water showed a high corrosion rate comparing to that of tap water. In case of CIP, the initial corrosion rate showed 3.511 mdd(milligrams per square decimeter per day) for reclaimed water and 2.064 mdd for tap water and the corrosion rate for 90 days showed 0.833 mdd for reclaimed water and 0.294 mdd for tap water. Also in case of GSP, the initial corrosion rate showed 2.703 mdd for reclaimed water and 2.499 mdd for tap water and the corrosion rate for 90 days showed 0.349 mdd for reclaimed water and 0.248 mdd for tap water, which was a tendency similar to that appeared in CIP with a tendency to reduce the corrosion rate. As a result of water quality changes of reclaimed water at pipe materials to carry out the loop test, there was higher conversion ratio of ammonia into nitrate in CIP and GSP with higher corrosion rate than that in STSP and PVCP where no corrosion has occurred. The highest denitrification rate of nitrate could be observed from CIP with the most particles generated from corrosion. In CIP, it could be confirmed that there was MIC (Microbiologically Induced Corrosion) as a result of EDS (Energy Dispersive X-ray spectrometer System) analysis results.

A study on corrosion mechanism of water steel pipes using SEM (SEM을 이용한 상수도 금속관 부식거동에 관한 연구)

  • 황상용
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.53-60
    • /
    • 2002
  • This experiment was performed to investigate the characteristics of corrosion mechanism of water steel pipes using SEM(Scanning Electron Microscope) from March 1. 2002 to November 30. The characteristics shown in these results can be summarized as the following: 1. When I investigated to the characteristics of iron pipes and zinc pipes using a SEM, I could be found that there was a distintion in interface between an iron pipe and the scale, and that a zinc pipe wears a dark color. 2. I find much rate of $Fe_2O_3$ and a little rate of FeS as corrosion products, but I hardly find $FeCO_3$without carbon. 3 It was found that the oxide corrosion rate was 0.2~0.3mm/year. And then A-1 was 0.323mm/year that was very high.

CLPP of Biofilm on Different Pipe Materials in Drinking Water Distribution System (수돗물속에서 관재질에 따른 생물막의 CLPP)

  • Lee Dong-Geun;Lee Jae-Hwa;Lee Sang-Hyeon;Ha Bae-Jin;Ha Jong-Myung
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.891-894
    • /
    • 2004
  • The effect of pipe materials on biofilm communities were investigated by CLPP (community level physiology profile) using Biolog GN plates. Heterotrophic bacterial concentrations were $10^4\;-\;10^6\;CFU/cm^2$ and there was no differences between galvanized iron and carbon steel. Average optical density of Biolog plate was similar between two pipe materials. However, CLPP was different according to the type of pipe materials and exposed times to tap water, and CLPP was independent of bacterial concentration. This represents the differences of bacterial communities with pipes and water contact times.

Effect of Cr content on the FAC of pipe material at 150℃ (150℃에서 원전 2차측 배관재료의 Cr함량에 따른 유체가속부식 특성)

  • Park, Tae Jun;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.274-279
    • /
    • 2013
  • Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. During the FAC, a protective oxide layer on carbon steel dissolves into flowing water leading to a thinning of the oxide layer and accelerating corrosion of base material. As a result, severe failures may occur in the piping and equipment of NPPs. Effect of alloying elements on FAC of pipe materials was studied with rotating cylinder FAC test facility at $150^{\circ}C$ and at flow velocity of 4m/s. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO) and temperature. Test solution was the demineralized water, and DO concentration was less than 1 ppb. Surface appearance of A 106 Gr. B which is used widely in secondary pipe in NPPs showed orange peel appearance, typical appearance of FAC. The materials with Cr content higher than 0.17wt.% showed pit. The pit is thought to early degradation mode of FAC. The corrosion product within the pit was enriched with Cr, Mo, Cu, Ni and S. But S was not detected in SA336 F22V with 2.25wt.% Cr. The enrichment of Cr and Mo seemed to be related with low, solubility of Cr and Mo compared to Fe. Measured FAC rate was compared with Ducreaux's relationship and showed slightly lower FAC rate than Ducreaux's relationship.