• 제목/요약/키워드: Steel truss structure

검색결과 141건 처리시간 0.029초

트러스를 기반으로 형성된 H-벌집형 샌드위치 심재 모델의 해석적 연구 (Analytical Study of H-Honeycomb Sandwich Core Structure Model based on Truss)

  • 최정호
    • 한국산업융합학회 논문집
    • /
    • 제20권2호
    • /
    • pp.133-140
    • /
    • 2017
  • This paper is a study of the central structural unit model of the sandwich core structure. The applied model is based on the honeycomb structure formed by the truss, the H-shaped honeycomb structure formed by adding the truss of H shape to the space of the center portion, and the honeycomb structure formed by the plate. Applied material property is AISI 304 stainless steel, which has cost effectiveness and easy to get near place. The truss diameter of the model is three different type: 1mm, 2mm and 3mm. ABAQUS software is obtained to do the analysis and applied test is quasi-static loading. Boundary conditions for the analysis are that vertical direction loading at top place without any rotation and bottom surface is fixed. The test results show that the H-truss model has the highest stiffness and yield strength. Therefore, it is hoped that more and more researching for the development of a unit model in sandwich core structure has been investigating and that the developed sandwich core model can be applied into various industrial fields such as mechanical or aerospace industries.

등가보 이론을 이용한 복합 거더의 정적 및 자유진동 해석 (Static and Free Vibration Analyses of Hybrid Girders by the Equivalent Beam Theory)

  • 최인식;여인호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1068-1073
    • /
    • 2007
  • 3D finite element analyses of a corrugated steel web girder and a steel truss web girder are conducted to investigate the static and dynamic behaviour of the hybrid girders. And the analyses results are compared with those by the equivalent beam theory. The equivalent theory is a theory that all section properties of a truss structure are replaced by section properties of a beam including the shear coefficient. When applying the equivalent beam theory, the shear coefficient of the corrugated steel web girder is estimated as the area ratio of total section to web section and that of the steel truss web girder is calculated by the equation proposed by Dewolf. Static deflections and natural frequencies by 3D finite element analyses and the those by the equivalent beam theory are relatively in good agreement.

  • PDF

등가보 이론을 이용한 복합 거더의 정적 및 자유진동 해석 (Static and Free Vibration Analyses of Hybrid Girders by the Equivalent Beam Theory)

  • 최인식;여인호
    • 한국철도학회논문집
    • /
    • 제10권5호
    • /
    • pp.600-606
    • /
    • 2007
  • 복부 파형강판 거더와 복합 트러스 거더의 정적 및 동적거동 특성을 분석하기 위해 3차원 유한요소해석을 수행하였고, 이 결과를 등가보 이론에 의한 해석결과와 비교하였다. 등가보 이론은 트러스 구조의 모든 단면제원을 등가의 보로 치환함과 동시에 전단계수 등의 단면특성을 고려한 이론이다. 등가보 이론 적용 시 복부 파형강판 거더의 전단계수는 복부 단면적에 대한 전체 단면적의 비로 산정하였고, 복합 트러스 거더의 전단계수는 Abdel의 계산식을 사용하여 산정하였다. 정적해석 및 자유진동해석 결과 3차원 유한요소모델을 이용한 해석결과가 전단변형을 고려한 등가보 이론에 의한 해석결과와 잘 일치하였다.

Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm

  • Bresolin, Jessica M.;Pravia, Zacarias M.C.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.603-617
    • /
    • 2022
  • Structural design, in general, is developed through trial and error technique which is guided by standards criteria and based on the intuition and experience of the engineer, a context that leads to structural over-dimensioning, with uneconomic solutions. Aiming to find the optimal design, structural optimization methods have been developed to find a balance between cost, structural safety, and material performance. These methods have become a great opportunity in the steel structural engineering domain since they have as their main purpose is weight minimization, a factor directly correlated to the real cost of the structure. Assuming an objective function of minimum weight with stress and displacement constraints provided by Brazilian standards, the present research proposes the sizing optimization and combined approach of sizing and shape optimization, through a software developed to implement the Simulated Annealing metaheuristic algorithm. Therefore, two steel plane frame layouts, each admitting four typical truss geometries, were proposed in order to expose the difference between the optimal solutions. The assessment of the optimal solutions indicates a notable weight reduction, especially in sizing and shape optimization combination, in which the quantity of design variables is increased along with the search space, improving the efficiency of the optimal solutions achieved.

Semi-active control on long-span reticulated steel structures using MR dampers under multi-dimensional earthquake excitations

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing;Zhao, Yong
    • Smart Structures and Systems
    • /
    • 제10권6호
    • /
    • pp.557-572
    • /
    • 2012
  • This paper focuses on the vibration control of long-span reticulated steel structures under multi-dimensional earthquake excitation. The control system and strategy are constructed based on Magneto-Rheological (MR) dampers. The LQR and Hrovat controlling algorithm is adopted to determine optimal MR damping force, while the modified Bingham model (MBM) and inverse neural network (INN) is proposed to solve the real-time controlling current. Three typical long-span reticulated structural systems are detailedly analyzed, including the double-layer cylindrical reticulated shell, single-layer spherical reticulated shell, and cable suspended arch-truss structure. Results show that the proposed control strategy can reduce the displacement and acceleration effectively for three typical structural systems. The displacement control effect under the earthquake excitation with different PGA is similar, while for the cable suspended arch-truss, the acceleration control effect increase distinctly with the earthquake excitation intensity. Moreover, for the cable suspended arch-truss, the strand stress variation can also be effectively reduced by the MR dampers, which is very important for this kind of structure to ensure that the cable would not be destroyed or relaxed.

기술트리를 이용한 입체트러스 강구조물의 과학적 기능분석 방법론에 관한 연구 (Study on the Scientific Functional Investigation of Steel Space Truss Structures by using Technology Tree Methodology)

  • 이동규;김도환;김진호
    • 한국강구조학회 논문집
    • /
    • 제25권4호
    • /
    • pp.321-333
    • /
    • 2013
  • 본 연구는 연구프로젝트의 기술과 기술의 기능의 체계적 관점에서 기술트리라는 과학적인 방법론의 사례를 제공한다. 기술트리 프로세스를 활용하여, 강구조물 중에 가장 범용적으로 사용되고 있는 입체 트러스 구조물을 대상으로, 차량을 차단하지 않는 터널 가설공사에 적합한 스마트한 입체 트러스 구조물이 되기 위한 세부 기능과 요소기술을 도출하는 기술전개 방법론을 제안한다. 본 연구에서는 이러한 기능분석 방법론은 문헌, 해석연구를 통한 검증프로세스를 통해 피드백이 가능함을 증명하였고, 향후 타 분야 기술의 효과적인 세부기능 전개 및 요구기술 도출에 활용이 가능할 것으로 사료된다.

직각 흡음체 설치 경량방음터널의 토출소음 저감효과 분석 (Analysis of Reduction Effect on Noise Discharge from Lightweight Soundproof Tunnels Installed with Lateral Sound-absorbing Panels)

  • 정영도;안동욱;노명현
    • 복합신소재구조학회 논문집
    • /
    • 제7권1호
    • /
    • pp.19-24
    • /
    • 2016
  • Most of the soundproof tunnels generate significant discharge noise through their inlets and outlets so that the length of the tunnel has been extended frequently than required to minimize the effect on such discharge noise. Thus, in this paper, we investigate reduction capability of discharge noise from the sound proof tunnel installed with lateral sound-absorbing panels on the partitioned truss members in the longitudinal direction of the tunnel. In conclusion, noise field analysis results shows that the sound proof tunnels with lateral sound-absorbing panels have an effect on discharge noise abatement and thereby tunnel's length reduction.

격벽화된 파이프 트러스 요소로 구성된 경량방음터널의 구조적 성능 평가 (Assessment of Structural Performance for a Lightweight Soundproof Tunnel Composed of Partitioned Pipe Truss Members)

  • 노명현;안동욱;주형중
    • 복합신소재구조학회 논문집
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, the full-size structural performance test for a lightweight soundproof tunnel composed of partitioned pipe truss members is carried out to investigate the structural performance. In addition, a nonlinear structural analysis of the same finite element model as the full-size testing model is performed to compare the test result. The test and analysis results showed that the lightweight soundproof tunnel ensures the structural safety against wind loads, snow loads and load combinations. As a result, the full-size test and analysis results meet all the design load conditions, hence the proposed lightweight soundproof tunnel is ready for the field application.

Vibration behavior of large span composite steel bar truss-reinforced concrete floor due to human activity

  • Cao, Liang;Li, Jiang;Zheng, Xing;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.391-404
    • /
    • 2020
  • Human-induced vibration could present a serious serviceability problem for large-span and/or lightweight floors using the high-strength material. This paper presents the results of heel-drop, jumping, and walking tests on a large-span composite steel rebar truss-reinforced concrete (CSBTRC) floor. The effects of human activities on the floor vibration behavior were investigated considering the parameters of peak acceleration, root-mean-square acceleration, maximum transient vibration value (MTVV), fundamental frequency, and damping ratio. The measured field test data were validated with the finite element and theoretical analysis results. A comprehensive comparison between the test results and current design codes was carried out. Based on the classical plate theory, a rational and simplified formula for determining the fundamental frequency for the CSBTRC floor is derived. Secondly, appropriate coefficients (βrp) correlating the MTVV with peak acceleration are suggested for heel-drop, jumping, and walking excitations. Lastly, the linear oscillator model (LOM) is adopted to establish the governing equations for the human-structure interaction (HSI). The dynamic characteristics of the LOM (sprung mass, equivalent stiffness, and equivalent damping ratio) are determined by comparing the theoretical and experimental acceleration responses. The HSI effect will increase the acceleration response.

목재를 이용한 육각형 공간 트러스 모델의 정적좌굴하중 특성 (Characteristics of Static Buckling Load of the Hexagonal Spatial Truss Models using Timber)

  • 하현주;손수덕;이승재
    • 한국공간구조학회논문집
    • /
    • 제22권3호
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.