• Title/Summary/Keyword: Steel substrate

Search Result 470, Processing Time 0.019 seconds

A Study on the Evaluation of the Friction and Wear Properties of the Sprayed Coating Layer (용사피막의 마찰.마모 특성 평가에 관한 연구)

  • 김영식;김윤해;김종호;최영국;강태영
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.66-74
    • /
    • 1996
  • In this study, friction and wear properties of flame sprayed specimens and hard Cr plating specimens were tested, and their properties were compared each other in dry and lubrication condition. Ni-Cr powder and steel powder were used as the spray powder and sprayed on the steel(S45C) substrate by flame sprayed method. Each wear surface was observed with SEM after friction and wear test. The friction coefficient of the as-forged steel specimens was the highest among surface treatment specimens, and the other specimens appeared in order as follows ; hard Cr-plating specimens, Ni-Cr powder sprayed specimens, steel powder sprayed specimens. Comparing the wear volumes in dry condition, as forged steel specimens appeared the greatest wear volume, and the other specimens appeared wear volume in order as follows ; Ni-Cr powder sprayed specimens, steel powder sprayed specimens, hard Cr plating specimens. In friction and wear test, the hard Cr plating specimens were worn by the abrasive phenomenon, involving the cracks. The wear volume of steel powder sprayed specimens was lower than that of Ni-Cr powder sprayed specimens. Comparing the tensile strength of both sprayed coating layers, the steel powder sprayed coating layer was better than Ni-Cr powder sprayed coating layer.

  • PDF

Study on the behavior of the Erosion-Corrosion for Ni-Cr Alloy Sprayed Coating in the Marine Environment (해양환경 중에서 Ni-Cr 용사피복재의 침식-부식 거동에 관한연구)

  • 이상열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.695-701
    • /
    • 1999
  • Thermal sprayed Ni-Cr alloy coating on the carbon steel was carried out erosion-corrosion test and electrochemical corrosion test in the marine environment. THe erosion-corrosion behavior and electrochemical corrosion characteristics of substrate(SS400) and thermal sprayed Ni-Cr coating was investigated, The erosion-corrosion control efficiency of Ni-Cr coating to substrate was also estimated quantitatively.

  • PDF

Effect of Ag Alloying on Device Performance of Flexible CIGSe Thin-film Solar Cells Using Stainless Steel Substrates

  • Awet Mana Amare;Inchan Hwang;Inyoung Jeong;Joo Hyung Park;Jin Gi An;Soomin Song;Young-Joo Eo;Ara Cho;Jun-Sik Cho;Seung Kyu Ahn;Jinsu Yoo;SeJin Ahn;Jihye Gwak;Hyun-wook Park;Jae Ho Yun;Kihwan Kim;Donghyeop Shin
    • Current Photovoltaic Research
    • /
    • v.11 no.1
    • /
    • pp.8-12
    • /
    • 2023
  • In this work, we investigated the thickness of Ag precursor layer to improve the performance of flexible CIGSe solar cells grown on stainless steel (STS) substrates through three-stage co-evaporation with Ga grading followed by alkali treatments. The small amount of incorporated Ag in CIGSe films showed enhancement in the grain size and device efficiency. With an optimal 6 nm-thick Ag layer, the best cell on the STS substrate yielded more than 16%, which is comparable to the soda-lime glass (SLG) substrate. Thus, the addition of controlled Ag combined with alkali post-deposition treatment (PDT) led to increased open-circuit voltage (VOC), accompanied by the increased built-in potential as confirmed by capacitance-voltage (C-V) measurements. It is related to a reduction of charge recombination at the depletion region. The results suggest that Ag alloying and alkali PDT are essential for producing highly efficient flexible CIGSe solar cells.

Surface Coating and Corrosion Characteristics of Bipolar Plates of PEMFC Application (PEMFC용 분리판 표면코팅 및 부식성 평가)

  • Kang, Kyung-Min;Kim, Dong-Mook;Choi, Jeong-Sik;Cha, In-Soo;Yun, Young-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2011
  • Stainless steel 304 and 316 plates were deposited with the multi-layered coatings of titanium film (0.1 um) and gold film (1-2 um) by an electron beam evaporation method. The XRD patterns of the stainless steel plates modified with the multi-layered coatings showed the crystalline phases of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The external gold films formed on the stainless steel plates showed micro structure of grains of about 100 nm diameter. The grain size of the external surface of the stainless steel plates increased with the gold film thickness. The electrical resistance and water contact angle of the stainless steel bipolar plates covered with multi-layered coatings were examined with the thickness of the external gold film.

Hot-dipped Al-Mg-Si Coating Steel - Its Structure, Electrochemical and Mechanical Properties -

  • Tsuru, Tooru
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.233-238
    • /
    • 2010
  • Hot-dipped Al-Mg-Si coatings to alternate Zn and Zn alloy coatings for steel were examined on metallographic structure, corrosion resistance, sacrificial ability, formation and growth of inter-metallic compounds, and mechanical properties. Near the eutectic composition of quasi-binary system of Al-$Mg_2Si$, very fine eutectic structure of ${\alpha}$-Al and $Mg_2Si$ was obtained and it showed excellent corrosion resistivity and sacrificial ability for a steel in sodium chloride solutions. Formation and growth of Al-Fe inter-metallic compounds at the interface of substrate steel and coated layer was suppressed by addition of Si. The inter-metallic compounds layer was usually brittle, however, the coating layer did not peel off as long as the thickness of the inter-metallic compounds layer was small enough. During sacrificial protection of a steel, amount of hydrogen into the steel was more than ten times smaller than that of Zn coated steel, suggesting to prevent hydrogen embrittlement. Al-Mg-Si coating is expected to apply for several kinds of high strength steels.

Chemical Protection of Stainless Steel by $TiO_2$ Coating Using Dip-Coating Technique

  • Kim, Kyung-Nam;Shin, Dae-Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.244-245
    • /
    • 2009
  • Sol-gel coatings of $TiO_2$ have been prepared from $TiO_2$ sol and deposited by dip-coating technique on 316L stainless steel sheets in order to study the electrochemical behaviorin corrosive solutions. The influence of the coatings on the chemical corrosion of the substrate has been evaluated by potentiodynamic polarization curves in different aqueous NaCl solution at $25^{\circ}C$.

  • PDF

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Properties of TiN Films Fabricated by Oblique Angle Deposition (빗각 증착으로 제조된 TiN 박막의 특성)

  • Jung, Jae-Hun;Yang, Ji-Hoon;Park, Hye-Sun;Song, Min-A;Jeong, Jae-In
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.3
    • /
    • pp.106-110
    • /
    • 2012
  • Oblique angle deposition (OAD) is a physical vapor deposition where incident vapor flux arrives at non-normal angles. It has been known that tilting the substrate changes the properties of the film, which is thought to be a result of morphological change of the film. In this study, OAD has been applied to prepare single and multilayer TiN films by cathodic arc deposition. TiN films have been deposited on cold-rolled steel sheets and stainless steel sheet. The deposition angle as well as substrate temperature and substrate bias was changed to investigate their effects on the properties of TiN films. TiN films were analyzed by color difference meter, scanning electron microscopy, nanoindenter and x-ray diffraction. The color of TiN films was not much changed according to the deposition conditions. The slanted and zigzag structures were observed from the single and multilayer films. The relation between substrate tilting angle (${\alpha}$) and the growth column angle (${\beta}$) followed the equation of $tan{\alpha}=2tan{\beta}$. The indentation hardness of TiN films deposited by OAD was low compared with the ones prepared at normal angle. However, it has been found that $H^3/E^2$ ratio of 3-layer TiN films prepared at OAD condition was a little higher than the ones prepared at normal angle, which can confirm the robustness of prepared films.

Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour

  • Jahangir, Hashem;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.877-889
    • /
    • 2020
  • This work features the outcomes of an empirical investigation into the characteristics of steel reinforced grout (SRG) composite - concrete interfaces. The parameters varied were loading rate, densities of steel fibres and types of load displacement responses or measurements (slip and machine grips). The following observations and results were derived from standard single-lap shear tests. Interfacial debonding of SRG - concrete joints is a function of both fracture of matrix along the bond interface and slippage of fibre. A change in the loading rate results in a variation in peak load (Pmax) and the correlative stress (σmax), slip and machine grips readings at measured peak load. Further analysis of load responses revealed that the behaviour of load responses is shaped by loading rate, fibre density as well as load response measurement variable. Notably, the out-of-plane displacement at peak load increased with increments in load rates and were independent of specimen fibre densities.

Fabrication of Graded-Boundary Ni/steel Material by Electron Beam (전자빔에 의한 조성구배계면 Ni/Steel 합금재료의 개발)

  • 김병철;김도훈
    • Laser Solutions
    • /
    • v.2 no.2
    • /
    • pp.27-33
    • /
    • 1999
  • Electron beam was applied on the low carbon steel in order to fabricate Metal/Metal GBM(Graded Boundary Material). Ni sheet was placed on the steel substrate. The electron beam was irradiated on the surface and produced a homogeous alloyed layer. Sequential repetition of electron beam treatments for 4 times resulted in 8mm thick graded layer. To determine each layers property, optical microscopy, XRD, microhardness tester and EDS were used. The residual stress was measured by the low angle x-ray diffraction method. The graded boundary layer was stepwise profile, but Ni content incresed up to 80 wt% and Fe content decreased 20 wt% near surface. Each layers microstructure and hardness varied by different Fe/Ni composition. The compressive residual stress was induced by martensite transformation in the 1st and End layers and the shrinkage cracks were formed in graded layer by rapid cooling.

  • PDF